【題目】已知數(shù)列的通項(xiàng)公式為,其中且.
(1)若是正項(xiàng)數(shù)列,求的取值范圍;
(2)若,數(shù)列滿足,且對(duì)任意,均有,寫出所有滿足條件的的值;
(3)若,數(shù)列滿足,其前n項(xiàng)和為,且使的i和j至少4組,、、……、中至少有5個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,求,滿足的充要條件并加以證明.
【答案】(1) (2) (3)證明見(jiàn)解析.
【解析】
(1)通過(guò)函數(shù)是與x軸交于兩點(diǎn)且開(kāi)口向上的拋物線可知,只需知均在1的左邊即可;
(2)通過(guò)化簡(jiǎn)可知,排除可知,此時(shí)可知對(duì)于而言,當(dāng)時(shí)單調(diào)遞減,當(dāng)時(shí)單調(diào)遞增,進(jìn)而解不等式組即得結(jié)論;
(3)通過(guò)及可知 ,結(jié)合可知,從而可知的最小值為5,通過(guò)中至少5個(gè)連續(xù)的值相等可知,且其他值不相等
,進(jìn)而可得的值為8.
(1)由題意,,,
使數(shù)列為正項(xiàng)數(shù)列,則,故的取值范圍是
(2)
當(dāng)時(shí),均單調(diào)遞增,不合題意
當(dāng)時(shí),對(duì)于可知,當(dāng)時(shí)單調(diào)遞減,當(dāng)時(shí)單調(diào)遞增,由題意可知
聯(lián)立不等式,解得
(3)
又,或
此時(shí)的的四個(gè)值為1,2,3,4,故又中至少5個(gè)連續(xù)的值相等
不妨設(shè),則
因?yàn)楫?dāng)時(shí),
,而使其他值不相等,則
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E:過(guò)點(diǎn)(0,1)且離心率.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)動(dòng)直線l與兩定直線l1:x﹣y=0和l2:x+y=0分別交于P,Q兩點(diǎn).若直線l總與橢圓E有且只有一個(gè)公共點(diǎn),試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)綠色出行,某市在推出“共享單車”后,又推出“新能源分時(shí)租賃汽車”.其中一款新能源分時(shí)租賃汽車,每次租車收費(fèi)的標(biāo)準(zhǔn)由兩部分組成:①根據(jù)行駛里程數(shù)按1元/公里計(jì)費(fèi);②行駛時(shí)間不超過(guò)分時(shí),按元/分計(jì)費(fèi);超過(guò)分時(shí),超出部分按元/分計(jì)費(fèi).已知王先生家離上班地點(diǎn)公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開(kāi)車花費(fèi)的時(shí)間 (分)是一個(gè)隨機(jī)變量.現(xiàn)統(tǒng)計(jì)了次路上開(kāi)車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)的頻數(shù)分布情況如下表所示:
時(shí)間(分) | ||||
頻數(shù) |
將各時(shí)間段發(fā)生的頻率視為概率,每次路上開(kāi)車花費(fèi)的時(shí)間視為用車時(shí)間,范圍為分.(1)寫出王先生一次租車費(fèi)用(元)與用車時(shí)間(分)的函數(shù)關(guān)系式;(2)若王先生一次開(kāi)車時(shí)間不超過(guò)分為“路段暢通”,設(shè)表示3次租用新能源分時(shí)租賃汽車中“路段暢通”的次數(shù),求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)分別是棱長(zhǎng)為2的正方體的棱的中點(diǎn).如圖,以為坐標(biāo)原點(diǎn),射線、、分別是軸、軸、軸的正半軸,建立空間直角坐標(biāo)系.
(1)求向量與的數(shù)量積;
(2)若點(diǎn)分別是線段與線段上的點(diǎn),問(wèn)是否存在直線,平面?若存在,求點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的通項(xiàng)公式為,其中,、.
(1)試寫出一組、的值,使得數(shù)列中的各項(xiàng)均為正數(shù).
(2)若,,數(shù)列滿足,且對(duì)任意的(),均有,寫出所有滿足條件的的值.
(3)若,數(shù)列滿足,其前項(xiàng)和為,且使(、,)的和有且僅有組,、、…、中有至少個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,求、的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于雙曲線,若點(diǎn)P(x0,y0)滿足,則稱P在的外部,若點(diǎn)P(x0,y0)滿足>1,則稱在的內(nèi)部;
(1)若直線y=kx+1上的點(diǎn)都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過(guò)點(diǎn)(2,1),圓x2+y2=r2(r>0)在C(a,b)內(nèi)部及C(a,b)上的點(diǎn)構(gòu)成的圓弧長(zhǎng)等于該圓周長(zhǎng)的一半,求b、r滿足的關(guān)系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點(diǎn)都在C(a,b)的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù),給出以下四個(gè)命題:(1)當(dāng)時(shí),單調(diào)遞減且沒(méi)有最值;(2)方程一定有實(shí)數(shù)解;(3)如果方程(為常數(shù))有解,則解得個(gè)數(shù)一定是偶數(shù);(4)是偶函數(shù)且有最小值.其中假命題的序號(hào)是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點(diǎn)分別為F1,F2,離心率為,A為橢圓C上一點(diǎn),且AF2⊥F1F2,且|AF2|.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左右頂點(diǎn)為A1,A2,過(guò)A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點(diǎn),試探究是否為定值,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若在區(qū)間內(nèi)有且只有一個(gè)實(shí)數(shù),使得成立,則稱函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間內(nèi)是否具有唯一零點(diǎn),說(shuō)明理由:
(2)已知向量,,,證明在區(qū)間內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com