【題目】已知橢圓C:1(a>b>0)的左右焦點(diǎn)分別為F1,F2,離心率為,A為橢圓C上一點(diǎn),且AF2F1F2,且|AF2|.

1)求橢圓C的方程;

2)設(shè)橢圓C的左右頂點(diǎn)為A1,A2,過(guò)A1,A2分別作x軸的垂線(xiàn) l1l2,橢圓C的一條切線(xiàn)l:y=kx+m(k≠0)l1l2交于M,N兩點(diǎn),試探究是否為定值,并說(shuō)明理由.

【答案】(1) (2)是,理由見(jiàn)解析

【解析】

1)設(shè)橢圓的焦距為,由已知可得點(diǎn)的橫坐標(biāo)為,將代入橢圓可得,可得,再由離心率,結(jié)合,求出,即可求解;

2)由(1)得l1:x=2l2:x=2,直線(xiàn)l方程與橢圓方程聯(lián)立,消去,得到關(guān)于的一元二次方程,,求出關(guān)系,求出直線(xiàn)l1,l2與直線(xiàn)l的交點(diǎn)坐標(biāo),求出,即可求出結(jié)論.

(1) 設(shè)橢圓的焦距為,根據(jù)題意,

A為橢圓C上一點(diǎn),且AF2F1F2,

點(diǎn)的橫坐標(biāo)為,將代入橢圓可得

|AF2|,所以

解得a=2,b,橢圓的方程為:

(2)由題設(shè)知l1:x=2,l2:x=2,直線(xiàn)l:y=kx+m,

聯(lián)立,消去y,

,

,

l11,l2聯(lián)立得M(2,﹣2k+m),N(2,2k+m),又F2(1,0),

所以(3,2km)(1,﹣2km)

=3(2km)(2k+m)=34k2+m2=0,

為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列滿(mǎn)足;數(shù)列滿(mǎn)足;數(shù)列為公比大于1的等比數(shù)列,且,為方程的兩個(gè)不相等的實(shí)根.

1)求數(shù)列和數(shù)列的通項(xiàng)公式;

2)將數(shù)列中的第項(xiàng),第項(xiàng),第項(xiàng),……,第項(xiàng),……刪去后剩余的項(xiàng)按從小到大的順序排成新數(shù)列,求數(shù)列的前2013項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的通項(xiàng)公式為,其中.

1)若是正項(xiàng)數(shù)列,求的取值范圍;

2)若,數(shù)列滿(mǎn)足,且對(duì)任意,均有,寫(xiě)出所有滿(mǎn)足條件的的值;

3)若,數(shù)列滿(mǎn)足,其前n項(xiàng)和為,且使ij至少4組,、、……、中至少有5個(gè)連續(xù)項(xiàng)的值相等,其它項(xiàng)的值均不相等,求,滿(mǎn)足的充要條件并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的首項(xiàng)為,公差為,等比數(shù)列的首項(xiàng)為,公比為,其中,且

1)求證:,并由推導(dǎo)的值;

2)若數(shù)列共有項(xiàng),前項(xiàng)的和為,其后的項(xiàng)的和為,再其后的項(xiàng)的和為,求的比值.

3)若數(shù)列的前項(xiàng),前項(xiàng)、前項(xiàng)的和分別為,試用含字母的式子來(lái)表示(即,且不含字母

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;

3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過(guò),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓與長(zhǎng)軸是短軸兩倍的橢圓:相切于點(diǎn)

(1)求橢圓與圓的方程;

(2)過(guò)點(diǎn)引兩條互相垂直的兩直線(xiàn)與兩曲線(xiàn)分別交于點(diǎn)與點(diǎn)(均不重合).為橢圓上任一點(diǎn),記點(diǎn)到兩直線(xiàn)的距離分別為,求的最大值,并求出此時(shí)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題:,為異面直線(xiàn),平面過(guò)直線(xiàn)且與直線(xiàn)平行,則直線(xiàn)與平面的距離等于異面直線(xiàn),之間的距離為真命題.根據(jù)上述命題,若,為異面直線(xiàn),且它們之間的距離為,則空間中與,均異面且距離也均為的直線(xiàn)的條數(shù)為(

A.0B.1C.多于1條,但為有限條D.無(wú)數(shù)多條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線(xiàn)的焦點(diǎn)為F且斜率為k的直線(xiàn)l交曲線(xiàn)C、兩點(diǎn),交圓M,N兩點(diǎn)(AM兩點(diǎn)相鄰).

(1)求證:為定值;

2)過(guò)A,B兩點(diǎn)分別作曲線(xiàn)C的切線(xiàn),,兩切線(xiàn)交于點(diǎn)P,求面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列滿(mǎn)足:對(duì)任意正整數(shù),都有,成等差數(shù)列,,,成等比數(shù)列,且

)求證:數(shù)列是等差數(shù)列;

)求數(shù)列,的通項(xiàng)公式;

)設(shè)=++…+,如果對(duì)任意的正整數(shù),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案