分析 (Ⅰ)由二倍角公式和輔助角公式,化簡得f(x)=sin(2ωx-$\frac{2π}{3}$),再結合正弦函數最小值的結論,解關于ω的方程,即可得ω的值,由此求得函數解析式,根據正弦函數圖象求單調減區(qū)間即可;
(Ⅱ)根據α的取值范圍和已知條件f(α)=-1得到$2α-\frac{2π}{3}=-\frac{π}{6}$或$\frac{7π}{6}$,由此求得a的值.
解答 解(Ⅰ)$f(x)=4cos(\frac{2π}{3}-ωx)sinωx-\sqrt{3}$=$4(-\frac{1}{2}cosωx+\frac{{\sqrt{3}}}{2}sinωx)sinωx-\sqrt{3}$=$-2sinωxcosωx+2\sqrt{3}{sin^2}ωx-\sqrt{3}=-sin2ωx-\sqrt{3}cos2ωx=2sin(2ωx-\frac{2π}{3})$.
∵f(x)在y軸右側的第一個最低點的橫坐標為$\frac{π}{12}$,
∴$2ω×\frac{π}{12}-\frac{2π}{3}=-\frac{π}{2}$,得ω=1
所以$f(x)=2sin(2x-\frac{2π}{3})$,當$2kπ+\frac{π}{2}≤2x-\frac{2π}{3}≤2kπ+\frac{3π}{2}$,
即x∈$[kπ+\frac{7π}{12},kπ+\frac{13π}{12}],k∈Z$時單調遞減;
(Ⅱ)α∈[0,π]可得$2α-\frac{2π}{3}∈[-\frac{2π}{3},\frac{4π}{3}]$,因為$f(α)=-\frac{1}{2}$,所以$2α-\frac{2π}{3}=-\frac{π}{6}$或$\frac{7π}{6}$,
所以$α=\frac{π}{4}$或$\frac{11π}{12}$.
點評 本題給出三角函數式,求函數的單調區(qū)間,著重考查了三角恒等變換和三角函數的圖象與性質等知識,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $2\sqrt{34}$ | B. | 10 | C. | $8\sqrt{2}$ | D. | $6\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(\frac{1}{4a},0)$ | B. | $(0,\frac{1}{16a})$ | C. | $(0,-\frac{1}{16a})$ | D. | $(\frac{1}{16a},0)$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com