12.已知函數(shù)f(x)=4x,點(diǎn)(an,bn)在函數(shù)y=f(x)的圖象上,Sn是數(shù)列{bn}的前n項(xiàng)之積,且Sn=2n(n+1)
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式.
(2)設(shè)cn=$\frac{1}{{{a_{n+1}}•{{log}_4}{b_n}}}$,求數(shù)列{cn}的前n項(xiàng)和.

分析 (1)由b1=S1;n>1時(shí),bn=$\frac{{S}_{n}}{{S}_{n-1}}$,可得數(shù)列{bn}的通項(xiàng)公式;再由點(diǎn)在函數(shù)圖象上,可得數(shù)列{an}的通項(xiàng)公式;
(2)求得cn=$\frac{1}{(n+1)•lo{g}_{4}{4}^{n}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,運(yùn)用數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)即可得到所求和.

解答 解:(1)點(diǎn)(an,bn)在函數(shù)y=f(x)的圖象上,
可得bn=4an,
由Sn是數(shù)列{bn}的前n項(xiàng)之積,
可得Sn=b1b2…bn=2n(n+1),
即有b1=S1=4;
n>1時(shí),bn=$\frac{{S}_{n}}{{S}_{n-1}}$=$\frac{{2}^{n(n+1)}}{{2}^{n(n-1)}}$=22n=4n
上式對(duì)n=1也成立,
故數(shù)列{bn}的通項(xiàng)公式為bn=4n;
即有bn=4n=4an
可得an=n;
(2)cn=$\frac{1}{{{a_{n+1}}•{{log}_4}{b_n}}}$=$\frac{1}{(n+1)•lo{g}_{4}{4}^{n}}$
=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
則數(shù)列{cn}的前n項(xiàng)和為1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用結(jié)論:n=1時(shí),b1=S1;n>1時(shí),bn=$\frac{{S}_{n}}{{S}_{n-1}}$,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.一圖形的投影是一條線段,這個(gè)圖形不可能是( 。
A.線段B.直線C.D.梯形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)函數(shù)y=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2},x<e}\\{alnx,x≥e}\end{array}\right.$的圖象上存在兩點(diǎn)P,Q,使得△POQ是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是(  )
A.(-1,$\frac{1}{e}$)B.(0,$\frac{1}{e+1}$]C.(0,$\frac{1}{e}$]D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知向量$\overrightarrow a$=(-1,3),$\overrightarrow b$=(1,k),若$\overrightarrow a$⊥$\overrightarrow b$,則實(shí)數(shù)k的值是( 。
A.3B.-3C.$\frac{1}{3}$D.$-\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.$C_{18}^n$=$C_{18}^2$,則n=2或16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.下列四個(gè)命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級(jí)部和二級(jí)部的人數(shù)分別是m、n,本次期末考試兩級(jí)部數(shù)學(xué)平均分分別是a、b,則這兩個(gè)級(jí)部的數(shù)學(xué)平均分為$\frac{na}{m}$+$\frac{mb}{n}$;
③某中學(xué)采用系統(tǒng)抽樣方法,從該校高一年級(jí)全體800名學(xué)生中抽50名學(xué)生做牙齒健康檢查,現(xiàn)將800名學(xué)生從001到800進(jìn)行編號(hào),已知從497--512這16個(gè)數(shù)中取得的學(xué)生編號(hào)是503,則初始在第1小組00l~016中隨機(jī)抽到的學(xué)生編號(hào)是007.
其中命題正確的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.求下列函數(shù)的零點(diǎn):
(1)y=-x2+3x+4;
(2)y=x2+4x+4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.表達(dá)式x$\sqrt{1-{y}^{2}}$+y$\sqrt{1-{x}^{2}}$的最大值是(  )
A.2B.1C.$\sqrt{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.如圖所示是某幾何體的三視圖,則該幾何體的表面積為(  )
A.57+24πB.57+15πC.48+15πD.48+24π

查看答案和解析>>

同步練習(xí)冊(cè)答案