分析 (1)通過(guò)a1=1,an-1=2an,即可得到通項(xiàng)公式,
(2)根據(jù)錯(cuò)位相減法即可求出前n項(xiàng)和
解答 解:(1)a1=1,an-1=2an,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{2}$,
∴數(shù)列{an}是以1為首項(xiàng),以$\frac{1}{2}$為公比的等比數(shù)列,
∴an=($\frac{1}{2}$)n-1,
(2)bn=(2n+1)an=(2n+1)($\frac{1}{2}$)n-1,
∴Tn=3×($\frac{1}{2}$)0+5×($\frac{1}{2}$)1+7×($\frac{1}{2}$)2+…+(2n+1)($\frac{1}{2}$)n-1,
∴$\frac{1}{2}$Tn=3×($\frac{1}{2}$)1+5×($\frac{1}{2}$)2+7×($\frac{1}{2}$)3+…+(2n-1)($\frac{1}{2}$)n-1+(2n+1)($\frac{1}{2}$)n,
∴$\frac{1}{2}$Tn=3+2×($\frac{1}{2}$)1+2×($\frac{1}{2}$)2+2×($\frac{1}{2}$)3+…+2•($\frac{1}{2}$)n-1-(2n+1)($\frac{1}{2}$)n=3+2($\frac{\frac{1}{2}(1-(\frac{1}{2})^{n-1})}{1-\frac{1}{2}}$)-(2n+1)($\frac{1}{2}$)n=5-(2n+5)($\frac{1}{2}$)n,
∴Tn=10-(2n+5)($\frac{1}{2}$)n-1.
點(diǎn)評(píng) 本題主要考查數(shù)列的通項(xiàng)公式的求法、前n項(xiàng)和公式的求法,等比數(shù)列等基礎(chǔ)知識(shí),考查抽象概括能力,推理論證能力,運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,解題時(shí)要注意錯(cuò)位相減法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 沒(méi)有 | B. | 僅有② | C. | ②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{a}$ | B. | $-\frac{a}{{\sqrt{1+{a^2}}}}$ | C. | $\frac{a}{{\sqrt{1+{a^2}}}}$ | D. | $-\frac{1}{{\sqrt{1+{a^2}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ②、④都可能為分層抽樣 | B. | ①、③都不能為分層抽樣 | ||
C. | ①、④都可能為系統(tǒng)抽樣 | D. | ②、③都不能為系統(tǒng)抽樣 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{2\sqrt{6}}{5}$ | B. | -2$\sqrt{6}$ | C. | 2$\sqrt{6}$ | D. | $\frac{2\sqrt{6}}{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com