奇函數(shù)f(x)在區(qū)間[1,4]上為減函數(shù),則它在區(qū)間[-4,-1]上( 。
A.是減函數(shù)B.是增函數(shù)
C.無法確定D.不具備單調(diào)性
∵f(x)為奇函數(shù)
∴f(-x)=-f(x),
?x1,x2∈[-4,-1],且x1<x2
∵f(x)區(qū)間[1,4]上單調(diào)遞減,
∴4≥-x1>-x2≥1,
∴f(-x1)<f(-x2),
∴f(x1)>f(x2
∴f(x)在區(qū)間[-4,-1]上單調(diào)減.
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如果奇函數(shù)f(x)在區(qū)間[1,4]上是增函數(shù)且最大值是5,那么f(x)在區(qū)間[-4,-1]上是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(m)+f(m-1)>0,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(a)+f(a-1)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)在區(qū)間(a,b)上是減函數(shù),證明f(x)在區(qū)間(-b,-a)上仍是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(-1)=-1.當x∈[-1,1]時,函數(shù)f(x)≤t2-2at+1,對一切a∈[-1,1]恒成立,則實數(shù)t的取值范圍為( 。

查看答案和解析>>

同步練習冊答案