設(shè)函數(shù)f(x)=sin2x-2sin2x+1.
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)的值.
【答案】分析:(1)先根據(jù)公式對(duì)函數(shù)進(jìn)行整理,再結(jié)合正弦函數(shù)的單調(diào)性即可得到答案;
(2)直接把條件代入原函數(shù),即可得到sinθ+cosθ=,再平方即可求出結(jié)論.
解答:解:(1)(3分)
,得單調(diào)增區(qū)間為.(6分)
(2)由
平方得.(12分)
點(diǎn)評(píng):本題主要考查正弦函數(shù)的單調(diào)性的應(yīng)用以及三角函數(shù)中的恒等變換應(yīng)用.考查計(jì)算能力以及公式掌握的熟練程度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•湖北)設(shè)函數(shù)f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,0)
,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•許昌一模)設(shè)函數(shù)f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),則函數(shù)f(x)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年河南省新鄉(xiāng)、許昌、平頂山高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=sin2(x+)-cos2(x+)(x∈R),則函數(shù)f(x)是( )
A.最小正周期為π的奇函數(shù)
B.最小正周期為π的偶函數(shù)
C.最小正周期為的奇函數(shù)
D.最小正周期為的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年湖北省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=sin2ωx+2sinωx•cosωx-cos2ωx+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈(,1).
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(diǎn),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)的圖象的一個(gè)對(duì)稱中心到最近的對(duì)稱軸的距離為,
(Ⅰ)求ω的值
(Ⅱ)求f(x)在區(qū)間[]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案