7.設(shè)全集U=R,設(shè)集合A=$\left\{{x\left|{y=\frac{1}{{\sqrt{{{log}_2}x-1}}}}\right.}\right\}$,設(shè)集合B={x|x2-3x≤0}
(1)求出集合A與B;   
(2)求(∁UA)∩B.

分析 (1)根據(jù)函數(shù)的性質(zhì)以及不等式的解法進(jìn)行求解即可.
(2)根據(jù)集合的基本運(yùn)算進(jìn)行求解.

解答 解:(1)集合A需滿足:$\begin{array}{l}{log_2}x-1>0\end{array}$,得x>2,所以集合A={x|x>2}…(3分)
集合B={x|0≤x≤3}…..(5分)
(2)∵A={x|x>2},
∴CRA={x|x≤2},…(7分)
則(CRA)∩B={x|0≤x≤2}…(10分)

點評 本題主要考查集合的基本運(yùn)算,根據(jù)函數(shù)的性質(zhì)結(jié)合不等式的關(guān)系求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.計算arcsin(sin$\frac{3}{4}$π)=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.明代程大位《算法統(tǒng)宗》卷10中有題:“遠(yuǎn)望巍巍塔七層,紅燈點點倍加增,共燈三百八十一,請問尖頭兒盞燈?”你的答案是( 。
A.2盞B.3盞C.4盞D.7盞

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知F是拋物線y2=2px(p>0)的焦點,O為拋物線的頂點,準(zhǔn)線與x軸的交點為M,點N在拋物線上.
(1)求直線MN的斜率的取值范圍,記λ=$\frac{{|{MN}|}}{{|{NF}|}}$,求λ的取值范圍;
(2)過點N的拋物線的切線交x軸于點P,則xN+xP是否為定值?
(3)在給定的拋物線上過已知定點P,給出用圓規(guī)與直尺作過點P的切線的作法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.直線x+y+a=0半圓與y=$\sqrt{1-{x^2}}$有兩個不同的交點,則a的取值范圍是( 。
A.[1,$\sqrt{2}$)B.[1,$\sqrt{2}$]C.[-$\sqrt{2}$,1]D.(-$\sqrt{2}$,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.證明對數(shù)的換底公式logab=$\frac{lo{g}_{c}b}{lo{g}_{c}a}$(a>0,且a≠1,c>0,且c≠1,b>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.5個人排成一列,其中甲不排在末位,且甲、乙兩人不能相鄰,則滿足條件的所有排列有( 。
A.18種B.36種C.48種D.54種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某幾何體的三視圖如圖所示,其中左視圖為半圓,則主視圖中α角的正切值為$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知直線l經(jīng)過點A(3,2)、B(3,-2),則直線l的斜率為( 。
A.0B.1C.-1D.不存在

查看答案和解析>>

同步練習(xí)冊答案