6.已知函數(shù)f(x)=lnx+ax2
(1)記m(x)=f′(x),若m′(1)=3,求實數(shù)a的值;
(2)已知函數(shù)g(x)=f(x)-ax2+ax,若g(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的值.

分析 (1)求出m(x),計算m′(1),從而求出a的值即可;
(2)求出函數(shù)g(x)的導數(shù),問題轉(zhuǎn)化為a≥-$\frac{1}{x}$在(0,+∞)成立,求出a的范圍即可.

解答 解:(1)m(x)=$\frac{1}{x}$+2ax,m′(x)=-$\frac{1}{{x}^{2}}$+2a,
則m′(1)=-1+2a=3,解得:a=2;
(2)g(x)=lnx+ax2-ax2+ax=lnx+ax,
g′(x)=$\frac{1}{x}$+a,
若g(x)在(0,+∞)上單調(diào)遞增,
則g′(x)≥0在(0,+∞)成立,
則a≥-$\frac{1}{x}$在(0,+∞)成立,
故a≥0.

點評 本題考查了函數(shù)的單調(diào)性問題,考查導數(shù)的應用以及轉(zhuǎn)化思想,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.要排出某班一天中語文、數(shù)學、政治、英語、體育、藝術(shù)六堂課的課程表,要求數(shù)學排在上午(前4節(jié)),體育排在下午(后2節(jié)),不同排法總數(shù)是( 。
A.720B.120C.144D.192

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知D=$\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≤0\\ 3x-y+6≥0\end{array}\right.}\right\}$,給出下列四個命題:
P1:?(x,y)∈D,x+y+1≥0;
P2:?(x,y)∈D,2x-y+2≤0;
P3:?(x,y)∈D,$\frac{y+1}{x-1}$≤-4;
P4:?(x,y)∈D,x2+y2≤2.
其中真命題的是( 。
A.P1,P2B.P2,P3C.P2,P4D.P3,P4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,點$A(1,\sqrt{3})$為橢圓$\frac{x^2}{2}+\frac{y^2}{n}=1$上一定點,過點A引兩直線與橢圓分別交于B,C兩點.
(1)求橢圓方程;
(2)若直線AB,AC與x軸圍成以點A為頂點的等腰三角形,求△ABC的面積最大值,并求出此時直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知O為坐標原點,橢圓C:$\frac{x^2}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為P,右頂點為Q,以
F1、F2為直徑的圓O與橢圓C內(nèi)切,直線PQ與圓O相交得到的弦長為$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l與以F1、F2為直徑的圓O相切,并且與橢圓C交于不同的兩點A、B,求△AOB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知一個半徑為$\sqrt{7}$的球中有一個各條棱長都相等的內(nèi)接正三棱柱,則這正三棱柱的體積是( 。
A.18B.16C.12D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知方向向量為$\overrightarrow e=(1,\sqrt{3})$的直線l過點A($0,-2\sqrt{3}$)和橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點,且橢圓C的中心O和橢圓的右準線上的點B滿足:$\overrightarrow{OB}•\overrightarrow e=0$,|$\overrightarrow{AB}$|=|$\overrightarrow{AO}$|.
(1)求橢圓C的方程;
(2)設(shè)M、N是橢圓C上兩個不同點,且M、N的縱坐標之和為1,記u為M、N的橫坐標之積.問是否存在最小的常數(shù)m,使u≤m恒成立?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.sin(-1740°)的值是( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.$\frac{14π}{3}$B.$\frac{10π}{3}$C.$\frac{8π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

同步練習冊答案