A. | $\frac{13}{10}$ | B. | $\frac{19}{10}$ | C. | $\frac{3}{2}$ | D. | -2 |
分析 根據(jù)$\overrightarrow{a}$∥$\overrightarrow$,可得$\frac{1}{2}$sinθ=cosθ,從而tanθ=2.利用“弦化切”思想,根據(jù)誘導(dǎo)公式和二倍角化簡可得答案.
解答 解:由題意,向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(cosθ,$\frac{1}{2}$),
∵$\overrightarrow{a}$∥$\overrightarrow$,
∴$\frac{1}{2}$sinθ=cosθ,
從而tanθ=2.
那么:2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ=2sin2θ+$\frac{1}{2}$cos2θ=4sinθcosθ+$\frac{1}{2}$cos2θ$-\frac{1}{2}$sin2θ=$\frac{4sinθcosθ+\frac{1}{2}co{s}^{2}θ-\frac{1}{2}si{n}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{4tanθ+\frac{1}{2}-\frac{1}{2}×ta{n}^{2}θ}{1+ta{n}^{2}θ}$=$\frac{13}{10}$.
故選A
點評 本題考查了誘導(dǎo)公式和二倍角化簡計算能力和同角三角函數(shù)關(guān)系式的計算.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | (0,1) | C. | (1,2) | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {1,3} | C. | {1,3,4,5} | D. | {0,1,2,3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0} | C. | (-1,1) | D. | (-1,3) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com