若實(shí)數(shù)m,n,x,y滿足m2+n2=a,x2+y2=b(a≠0),則mx+ny的最大值是(    )

A.              B.              C.              D.

解析:設(shè)m=cosα,n=sinα,x=sinβ,?y=cosβ,則mx+ny=cosα·sinβ+sinα·cosβ=sin(α+β)≤.

答案:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)設(shè)函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試?yán)么私Y(jié)論解決下列問題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

函數(shù)f(x)的定義域?yàn)?b>R,對(duì)任意x、yR,都有f(xy)=f(x)f(y),且x>0時(shí),0<f(x)<1.

(1)當(dāng)x<0時(shí),試比較f(x)與1的大;

(2)f(x)是否具有單調(diào)性,并證明你的結(jié)論;

(3)若集合M{(x,y)|f(x2)f(y2)>f(1)},N{(x,y)|f(axy2)=1},MN,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

函數(shù)f(x)的定義域?yàn)?b>R,對(duì)任意x、yR,都有f(xy)=f(x)f(y),且x>0時(shí),0<f(x)<1.

(1)當(dāng)x<0時(shí),試比較f(x)與1的大;

(2)f(x)是否具有單調(diào)性,并證明你的結(jié)論;

(3)若集合M{(x,y)|f(x2)f(y2)>f(1)},N{(x,y)|f(axy2)=1},MN,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省四市九校高三上學(xué)期12月月考理科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知a∈R,函數(shù),g(x)=(lnx-1)ex+x(其中e為自然對(duì)數(shù)的底數(shù)).(1)判斷函數(shù)f(x)在上的單調(diào)性;(2)是否存在實(shí)數(shù),使曲線y=g(x)在點(diǎn)x=x0處的切線與y軸垂直? 若存在,求出x0的值;若不存在,請(qǐng)說明理由.(3)若實(shí)數(shù)m,n滿足m>0, n>0,求證:nnemmnen.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案