【題目】已知橢圓的左、右頂點(diǎn)分別為,上、下頂點(diǎn)分別為,,為其右焦點(diǎn),,且該橢圓的離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)過點(diǎn)作斜率為的直線交橢圓軸上方的點(diǎn),交直線于點(diǎn),直線與橢圓的另一個(gè)交點(diǎn)為,直線與直線交于點(diǎn).若,求取值范圍.

【答案】(Ⅰ);(Ⅱ)

【解析】

(Ⅰ)由題意可得,的坐標(biāo),結(jié)合橢圓離心率,及隱含條件列式求得的值,則橢圓方程可求;(Ⅱ)設(shè)直線,求得的坐標(biāo),再設(shè)直線,求出點(diǎn)的坐標(biāo),寫出的方程,聯(lián)立,可求出的坐標(biāo),由,可得關(guān)于的函數(shù)式,由單調(diào)性可得取值范圍.

(Ⅰ),,

,,

,得,又,

解得:,,

橢圓的標(biāo)準(zhǔn)方程為;

(Ⅱ)設(shè)直線,則與直線的交點(diǎn)

,設(shè)直線,

聯(lián)立,消可得

解得,

聯(lián)立,得,

直線,

聯(lián)立,解得,,

,,,

,

函數(shù)上單調(diào)遞增,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形和梯形所在的平面互相垂直,,,.

(1)若的中點(diǎn),求證:平面;

(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)的發(fā)展,諸如滴滴打車”“神州專車等網(wǎng)約車服務(wù)在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網(wǎng)約車在省的發(fā)展情況,省某調(diào)查機(jī)構(gòu)從該省抽取了個(gè)城市,分別收集和分析了網(wǎng)約車的兩項(xiàng)指標(biāo)數(shù),數(shù)據(jù)如下表所示:

城市1

城市2

城市3

城市4

城市5

指標(biāo)數(shù)

指標(biāo)數(shù)

經(jīng)計(jì)算得:

1)試求間的相關(guān)系數(shù),并利用說明是否具有較強(qiáng)的線性相關(guān)關(guān)系(,則線性相關(guān)程度很高,可用線性回歸模型擬合)

2)立關(guān)于的回歸方程,并預(yù)測當(dāng)指標(biāo)數(shù)為時(shí),指標(biāo)數(shù)的估計(jì)值.

附:相關(guān)公式:,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直線與曲線滿足以下兩個(gè)條件:點(diǎn)在曲線上,直線方程為;曲線在點(diǎn)附近位于直線的兩側(cè),則稱直線在點(diǎn)切過曲線.下列選項(xiàng)正確的是(

A.直線在點(diǎn)切過曲線

B.直線在點(diǎn)切過曲線

C.直線在點(diǎn)切過曲線

D.直線在點(diǎn)切過曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒內(nèi)有大小相同的9個(gè)球,其中2個(gè)紅色球,3個(gè)白色球,4個(gè)黑色球.規(guī)定取出1個(gè)紅色球得1分,取出1個(gè)白色球得0分,取出1個(gè)黑色球得分,現(xiàn)從盒內(nèi)任取3個(gè)球.

(Ⅰ)求取出的3個(gè)球中至少有一個(gè)紅球的概率;

(Ⅱ)求取出的3個(gè)球得分之和恰為1分的概率;

(Ⅲ)設(shè)為取出的3個(gè)球中白色球的個(gè)數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若函數(shù)只有一個(gè)零點(diǎn),求

2)在(1)的條件下,當(dāng)時(shí),有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級進(jìn)行數(shù)學(xué)考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機(jī)抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨(dú)立的,求ξ的分布列及數(shù)學(xué)期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省積極響應(yīng)教育部號召實(shí)行新課程改革,為了調(diào)查某校高三學(xué)生的物理考試成績是否達(dá)到級與學(xué)生性別是否有關(guān),從該校高三學(xué)生中隨機(jī)抽取了部分男女生的成績得到如下列聯(lián)表:

考試成績達(dá)到

考試成績未達(dá)到

總計(jì)

男生

26

40

女生

6

總計(jì)

70

1)(。⿲列聯(lián)表補(bǔ)充完整;

(ⅱ)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為物理考試成績是否達(dá)到級與性別有關(guān)

2)將頻率視作概率,從該校高三年級任意抽取3名學(xué)生的成績,求物理考試成績達(dá)到級的人數(shù)的分布列及期望.

附:

0.050

0.010

0.001

3.841

6.635

10..828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開設(shè)了射擊選修課,規(guī)定向、兩個(gè)靶進(jìn)行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學(xué)經(jīng)訓(xùn)練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設(shè)小明同學(xué)每次射擊的結(jié)果相互獨(dú)立.現(xiàn)對小明同學(xué)進(jìn)行以上三次射擊的考核.

1)求小明同學(xué)恰好命中一次的概率;

2)求小明同學(xué)獲得總分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案