【題目】已知函數(shù) ,若存在x∈N*使得f(x)≤2成立,則實(shí)數(shù)a的取值范圍為 .
【答案】(﹣∞,﹣15]
【解析】解:f(x)≤2,即為 ≤2, 由x∈N* , 可得3x2+(a﹣2)x+24≤0,
即有2﹣a≥ =3x+ ,
由3x+ ≥2 =12 ,
當(dāng)且僅當(dāng)x=2 N,
由x=2可得6+12=18;x=3時,可得9+8=17,
可得3x+ 的最小值為17,
由存在x∈N*使得f(x)≤2成立,
可得2﹣a≥17,
解得a≤﹣15.
故答案為:(﹣∞,﹣15].
由題意可得3x2+(a﹣2)x+24≤0,即有2﹣a≥ =3x+ ,運(yùn)用基本不等式求得到成立的條件,再由x的范圍,可得最小值,運(yùn)用存在性問題的解法,解不等式即可得到所求范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.直線l的參數(shù)方程是 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρ= sin( ).
(1)求曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于M、N兩點(diǎn),求M、N兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)證明:CP⊥BD;
(2)若AP=PC=2 ,求二面角A﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x不等式xlnx﹣x3+x2≤aex恒成立,則實(shí)數(shù)a的取值范圍是( )
A.[e,+∞)
B.[0,+∞)
C.
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA⊥平面AC,四邊形ABCD是矩形,E、F分別是AB、PD的中點(diǎn).
(Ⅰ)求證:AF∥平面PCE;
(Ⅱ)若二面角P﹣CD﹣B為45°,AD=2,CD=3,求點(diǎn)F到平面PCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某三棱錐的正視圖、側(cè)視圖和俯視圖分別是直角三角形、等腰三角形和等邊三角形,若該三棱錐的頂點(diǎn)都在同一球面上,則該球的表面積為( )
A.27π
B.48π
C.64π
D.81π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2x+b)ex , F(x)=bx﹣lnx,b∈R.
(1)若b<0,且存在區(qū)間M,使f(x)和F(x)在區(qū)間M上具有相同的單調(diào)性,求b的取值范圍;
(2)若F(x+1)>b對任意x∈(0,+∞)恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△AnBnCn的三邊長分別為an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,則∠An的最大值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com