【題目】2020年是我國(guó)全面建成小康社會(huì)和“十三五”規(guī)劃收官之年,也是佛山在經(jīng)濟(jì)總量超萬(wàn)億元新起點(diǎn)上開(kāi)啟發(fā)展新征程的重要?dú)v史節(jié)點(diǎn).作為制造業(yè)城市,佛山一直堅(jiān)持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國(guó)家制造業(yè)創(chuàng)新中心,走“世界科技+佛山智造+全球市場(chǎng)”的創(chuàng)新發(fā)展之路.在推動(dòng)制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠(chǎng)統(tǒng)籌各類(lèi)資源,進(jìn)行了積極的改革探索.下表是該工廠(chǎng)每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量(件)與相應(yīng)的生產(chǎn)總成本(萬(wàn)元)的四組對(duì)照數(shù)據(jù).
5 | 7 | 9 | 11 | |
200 | 298 | 431 | 609 |
工廠(chǎng)研究人員建立了與的兩種回歸模型,利用計(jì)算機(jī)算得近似結(jié)果如下:
模型①:;
模型②:.
其中模型①的殘差(實(shí)際值預(yù)報(bào)值)圖如圖所示:
(1)根據(jù)殘差分析,判斷哪一個(gè)更適宜作為關(guān)于的回歸方程?并說(shuō)明理由;
(2)市場(chǎng)前景風(fēng)云變幻,研究人員統(tǒng)計(jì)了20個(gè)月的產(chǎn)品銷(xiāo)售單價(jià),得到頻數(shù)分布表如下:
銷(xiāo)售單價(jià)分組(萬(wàn)元) | |||
頻數(shù) | 10 | 6 | 4 |
若以這20個(gè)月銷(xiāo)售單價(jià)的平均值定為今后的銷(xiāo)售單價(jià)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),結(jié)合你對(duì)(1)的判斷,當(dāng)月產(chǎn)量為12件時(shí),預(yù)測(cè)當(dāng)月的利潤(rùn).
【答案】(1)模型①更適宜作為關(guān)于的回歸方程,見(jiàn)解析(2)295萬(wàn)元.
【解析】
(1) 模型①更適合作為y關(guān)于x的回歸方程.先根據(jù)模型②: y=68x- 160逐一算出四組數(shù)據(jù)的殘差, 并整理成表,再作出殘差圖,然后對(duì)比模型①與②,從殘差的絕對(duì)值大小、殘差點(diǎn)分布的帶狀區(qū)域的寬窄或殘差點(diǎn)離x軸的遠(yuǎn)近進(jìn)行理由闡述即可;
(2)先根據(jù)頻數(shù)分布表算出這20個(gè)月銷(xiāo)售單價(jià)的平均值,設(shè)月利潤(rùn)為萬(wàn)元,則,再把x=12代入,求出z的值即可得解.
(1)模型②的殘差數(shù)據(jù)如下表:
5 | 7 | 9 | 11 | |
200 | 298 | 431 | 609 | |
20 | -18 | -21 | 21 |
模型②的殘點(diǎn)圖如圖所示.
模型①更適宜作為關(guān)于的回歸方程,因?yàn)椋?/span>
理由1:模型①這個(gè)4個(gè)樣本點(diǎn)的殘差的絕對(duì)值都比模型②的小.
理由2:模型①這4個(gè)樣本的殘差點(diǎn)落在的帶狀區(qū)域比模型②的帶狀區(qū)域更窄.
理由3:模型①這4個(gè)樣本的殘差點(diǎn)比模型②的殘差點(diǎn)更貼近軸.
(2)這20個(gè)月銷(xiāo)售單價(jià)的平均值為,
設(shè)月利潤(rùn)為萬(wàn)元,由題意知,
當(dāng)時(shí),(萬(wàn)元),
所以當(dāng)月產(chǎn)量為12件時(shí),預(yù)測(cè)當(dāng)月的利潤(rùn)為295萬(wàn)元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若對(duì)于任意,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)求f(x)的單調(diào)區(qū)間:
(2)若ax2+x+a﹣exx+exlnx≤0成立,求正實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙M過(guò)點(diǎn),且與⊙N:內(nèi)切,設(shè)⊙M的圓心M的軌跡為曲線(xiàn)C.
(1)求曲線(xiàn)C的方程:
(2)設(shè)直線(xiàn)l不經(jīng)過(guò)點(diǎn)且與曲線(xiàn)C相交于P,Q兩點(diǎn).若直線(xiàn)PB與直線(xiàn)QB的斜率之積為,判斷直線(xiàn)l是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出此定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,
(1)若,且在其定義域上存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù), ,若恒成立,求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過(guò)線(xiàn)段的中點(diǎn)作軸的垂線(xiàn)分別交, 于點(diǎn)、,證明: 在點(diǎn)處的切線(xiàn)與在點(diǎn)處的切線(xiàn)不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)在上存在兩個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】港珠澳大橋是一座具有劃時(shí)代意義的大橋.它連通了珠海香港澳門(mén)三地,大大縮短了三地的時(shí)空距離,盤(pán)活了珠江三角洲的經(jīng)濟(jì),被譽(yù)為新的世界七大奇跡.截至2019年10月23日8點(diǎn),珠海公路口岸共驗(yàn)放出入境旅客超過(guò)1400萬(wàn)人次,日均客流量已經(jīng)達(dá)到4萬(wàn)人次,驗(yàn)放出入境車(chē)輛超過(guò)70萬(wàn)輛次,2019年春節(jié)期間,客流再次大幅增長(zhǎng),日均客流達(dá)8萬(wàn)人次,單日客流量更是創(chuàng)下11.3萬(wàn)人次的最高紀(jì)錄.
2019年從五月一日開(kāi)始的連續(xù)100天客流量頻率分布直方圖如下
(1)①同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替,根據(jù)頻率分布直方圖.估計(jì)客流量的平均數(shù).
②求客流量的中位數(shù).
(2)設(shè)這100天中客流量超過(guò)5萬(wàn)人次的有天,從這天中任取兩天,設(shè)為這兩天中客流量超過(guò)7萬(wàn)人的天數(shù).求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,且長(zhǎng)度單位相同.
(1)求圓的極坐標(biāo)方程;
(2)若直線(xiàn):(為參數(shù))被圓截得的弦長(zhǎng)為2,求直線(xiàn)的傾斜角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com