【題目】已知函數(shù)().

1)討論函數(shù)的單調(diào)性;

2)求證: .

【答案】1)答案見解析.(2)證明見解析

【解析】

1)求導(dǎo),對(duì)參數(shù)進(jìn)行分類討論,根據(jù)導(dǎo)數(shù)正負(fù),即可判斷函數(shù)單調(diào)性;

2)構(gòu)造函數(shù),利用導(dǎo)數(shù)判斷其單調(diào)性和最值,即可容易證明.

1)定義域?yàn)?/span>,

當(dāng)時(shí),,

所以函數(shù)的單調(diào)遞增區(qū)間為,遞減區(qū)間為;

當(dāng)時(shí),令,得,

當(dāng)時(shí),恒成立,

所以函數(shù)的單調(diào)遞增區(qū)間為,無減區(qū)間;

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

當(dāng)時(shí),

所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,遞減區(qū)間為;

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,無減區(qū)間;

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2)設(shè),

由(1)可知,當(dāng)時(shí),,

的單調(diào)遞增區(qū)間為,遞減區(qū)間為,

所以的單調(diào)遞增區(qū)間為,遞減區(qū)間為,

,所以上單調(diào)遞增

,

所以當(dāng)時(shí),時(shí),;

又當(dāng)時(shí),,時(shí),

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點(diǎn)A(6,0),點(diǎn)P是曲線C1上的動(dòng)點(diǎn),QAP的中點(diǎn).

(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;

(2)直線l與直線C2交于AB兩點(diǎn),若|AB|≥2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義兩個(gè)函數(shù)的關(guān)系:函數(shù)的定義域分別為,若對(duì)任意的,總存在,使得,我們就稱函數(shù)子函數(shù).已知函數(shù),,

1)求函數(shù)的單調(diào)區(qū)間;

2)若的一個(gè)子函數(shù),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽性的概率均為)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形為正方形,四邊形為矩形,且平面與平面互相垂直.若多面體 的體積為,則該多面體外接球表面積的最小值為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù)),直線經(jīng)過點(diǎn)且傾斜角為.

1)求曲線的極坐標(biāo)方程和直線的參數(shù)方程;

2)已知直線與曲線交于,滿足的中點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】水資源與永恒發(fā)展2015年聯(lián)合國世界水資源日主題,近年來,某企業(yè)每年需要向自來水廠所繳納水費(fèi)約4萬元,為了緩解供水壓力,決定安裝一個(gè)可使用4年的自動(dòng)污水凈化設(shè)備,安裝這種凈水設(shè)備的成本費(fèi)(單位:萬元)與管線、主體裝置的占地面積(單位:平方米)成正比,比例系數(shù)約為0.2.為了保證正常用水,安裝后采用凈水裝置凈水和自來水廠供水互補(bǔ)的用水模式.假設(shè)在此模式下,安裝后該企業(yè)每年向自來水廠繳納的水費(fèi)C(單位:萬元)與安裝的這種凈水設(shè)備的占地面積x(單位:平方米)之間的函數(shù)關(guān)系是C(x)= (x≥0,k為常數(shù)).記y為該企業(yè)安裝這種凈水設(shè)備的費(fèi)用與該企業(yè)4年共將消耗的水費(fèi)之和.

(1)試解釋C(0)的實(shí)際意義,并建立y關(guān)于x的函數(shù)關(guān)系式并化簡(jiǎn);

(2)當(dāng)x為多少平方米時(shí),y取得最小值,最小值是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,直線與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過點(diǎn)的直線交橢圓,兩點(diǎn),直線分別交直線,兩點(diǎn).

1)求橢圓的方程;

2)以線段為直徑的圓是否過定點(diǎn)?若是,寫出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,為多面體,平面與平面垂直,點(diǎn)在線段上, 都是正三角形.

(1)證明:直線∥面

(2)在線段上是否存在一點(diǎn),使得二面角的余弦值是,若不存在請(qǐng)說明理由,若存在請(qǐng)求出點(diǎn)所在的位置。

查看答案和解析>>

同步練習(xí)冊(cè)答案