【題目】已知橢圓:的離心率為,直線:與以原點(diǎn)為圓心,以橢圓的短半軸長(zhǎng)為半徑的圓相切.為左頂點(diǎn),過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于,兩點(diǎn).
(1)求橢圓的方程;
(2)以線段為直徑的圓是否過(guò)定點(diǎn)?若是,寫(xiě)出所有定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
【答案】(1);(2)是,定點(diǎn)坐標(biāo)為或
【解析】
(1)根據(jù)相切得到,根據(jù)離心率得到,得到橢圓方程.
(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,聯(lián)立方程得到,,計(jì)算點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,圓的方程可化為,得到答案.
(1)根據(jù)題意:,因?yàn)?/span>,所以,
所以橢圓的方程為.
(2)設(shè)直線的方程為,點(diǎn)、的坐標(biāo)分別為,,
把直線的方程代入橢圓方程化簡(jiǎn)得到,
所以,,
所以,,
因?yàn)橹本的斜率,所以直線的方程,
所以點(diǎn)的坐標(biāo)為,同理,點(diǎn)的坐標(biāo)為,
故以為直徑的圓的方程為,
又因?yàn)?/span>,,
所以圓的方程可化為,令,則有,
所以定點(diǎn)坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正三角形的邊長(zhǎng)為,將它沿高折疊,使點(diǎn)與點(diǎn)間的距離為,則四面體外接球的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的右焦點(diǎn)為,過(guò)作兩條直線分別與圓:相切于,且為直角三角形. 又知橢圓上的點(diǎn)與圓上的點(diǎn)的最大距離為.
(1)求橢圓及圓的方程;
(2)若不經(jīng)過(guò)點(diǎn)的直線:(其中)與圓相切,且直線與橢圓交于,求的周長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是拋物線上一點(diǎn),點(diǎn)為拋物線的焦點(diǎn),.
(1)求直線的方程;
(2)若直線與拋物線的另一個(gè)交點(diǎn)為,曲線在點(diǎn)與點(diǎn)處的切線分別為,直線相交于點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足:對(duì)任意的,若,則,且,設(shè)集合,集合中元素最小值記為,集合中元素最大值記為.
(1)對(duì)于數(shù)列:,寫(xiě)出集合及;
(2)求證:不可能為18;
(3)求的最大值以及的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面是邊長(zhǎng)為4的菱形,,,平面.
(1)證明:;
(2)若是的中點(diǎn),,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗的高度,其莖葉圖如圖.根據(jù)莖葉圖,下列描述正確的是( )
A.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,且甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊
B.甲種樹(shù)苗的平均高度大于乙種樹(shù)苗的平均高度,但乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊
C.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,且乙種樹(shù)苗比甲種樹(shù)苗長(zhǎng)得整齊
D.乙種樹(shù)苗的平均高度大于甲種樹(shù)苗的平均高度,但甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com