【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元),這些數(shù)字的背后,除了是消費者買買買的表現(xiàn),更是購物車?yán)镏袊孪M的奇跡,為了研究歷年銷售額的變化趨勢,一機(jī)構(gòu)統(tǒng)計了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)(單位:十億元).繪制如下表1

1

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號

1

2

3

4

5

6

7

8

9

10

銷售額

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據(jù)以上數(shù)據(jù)繪制散點圖,如圖所示.

把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個,求至少取到一個狂歡年的概率.

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計公式分別為.

【答案】

【解析】

根據(jù)題意,找出暢銷年個數(shù)和狂歡年個數(shù),寫出暢銷年中不是狂歡年和是狂歡年的用不同的字母來表示,寫出所有的基本事件,找出滿足條件的基本事件數(shù),利用古典概型公式求得結(jié)果.

暢銷年個數(shù):4,其中的狂歡年個數(shù):2,

記暢銷年中不是狂歡年為,;狂歡年為,

則總共有,,,,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于雙曲線,定義為其伴隨曲線,記雙曲線的左、右頂點為

1)當(dāng)時,記雙曲線的半焦距為,其伴隨橢圓的半焦距為,若,求雙曲線的漸近線方程.

2)若雙曲線的方程為,弦軸,記直線與直線的交點為,求其動點的軌跡方程.

3)過雙曲線的左焦點,且斜率為的直線與雙曲線交于兩點,求證:對任意的,在伴隨曲線上總存在點,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一名曰塹堵的幾何體,已知 AE⊥底面BCFE , DF AE , DF = AE = 1, CE =,四邊形ABCD 是正方形.

1)《九章算術(shù)》中將四個面都是直角三角形的四面體稱為鱉臑.判斷四面體 EABC 是否為鱉臑,若是,寫出其 每一個面的直角,并證明;若不是,請說明理由.

2)求四面體 EABC 的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三實驗班的60名學(xué)生期中考試的語文、數(shù)學(xué)成績都在內(nèi),其中語文成績分組區(qū)間是:,,.其成績的頻率分布直方圖如圖所示,這60名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

分組區(qū)間

24

3

數(shù)學(xué)人數(shù)

12

4

1)求圖中的值及數(shù)學(xué)成績在的人數(shù);

2)語文成績在3名學(xué)生均是女生,數(shù)學(xué)成績在4名學(xué)生均是男生,現(xiàn)從這7名學(xué)生中隨機(jī)選取4名學(xué)生,事件為:“其中男生人數(shù)不少于女生人數(shù)”,求事件發(fā)生的概率;

3)若從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2名學(xué)生,且這2名學(xué)生中數(shù)學(xué)成績在的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,,平面平面

1)求證:平面平面;

2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖.四棱柱的底面是直角梯形,,,四邊形均為正方形.

1)證明;平面平面ABCD;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個工業(yè)凹槽的軸截面是雙曲線的一部分,它的方程是,在凹槽內(nèi)放入一個清潔鋼球(規(guī)則的球體),要求清潔鋼球能擦凈凹槽的最底部,則清潔鋼球的最大半徑為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司準(zhǔn)備投產(chǎn)一種新產(chǎn)品,經(jīng)測算,已知每年生產(chǎn)萬件的該種產(chǎn)品所需要的總成本(萬元),依據(jù)產(chǎn)品尺寸,產(chǎn)品的品質(zhì)可能出現(xiàn)優(yōu)、中、差三種情況,隨機(jī)抽取了1000件產(chǎn)品測量尺寸,尺寸分別在,,,,(單位:)中,經(jīng)統(tǒng)計得到的頻率分布直方圖如圖所示.

產(chǎn)品的品質(zhì)情況和相應(yīng)的價格(元/件)與年產(chǎn)量之間的函數(shù)關(guān)系如下表所示.

產(chǎn)品品質(zhì)

立品尺寸的范圍

價格與產(chǎn)量的函數(shù)關(guān)系式

優(yōu)

以頻率作為概率解決如下問題:

1)求實數(shù)的值;

2)當(dāng)產(chǎn)量確定時,設(shè)不同品質(zhì)的產(chǎn)品價格為隨機(jī)變量,求隨機(jī)變量的分布列;

3)估計當(dāng)年產(chǎn)量為何值時,該公司年利潤最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

1)求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)與函數(shù)在公共點處有相同的切線,且上恒成立.

i)求的值;(為函數(shù)的導(dǎo)函數(shù))

ii)求實數(shù)n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案