【題目】如圖,在三棱錐中,為正三角形,為棱的中點(diǎn),,平面平面

1)求證:平面平面

2)若是棱上一點(diǎn),與平面所成角的正弦值為,求二面角的正弦值.

【答案】(1)證明見解析(2)

【解析】

1)先根據(jù)平面平面,得出,結(jié)合條件得出平面,從而可得.

2)建立空間直角坐標(biāo)系,結(jié)合與平面所成角的正弦值為得出的坐標(biāo),然后利用法向量可求.

1)因?yàn)?/span>為正三角形,為棱的中點(diǎn),所以,

又平面平面,且平面平面

所以平面,

所以,又,且

所以平面.

平面,

所以平面平面.

2)作中點(diǎn),連,由(1)及可知平面

為坐標(biāo)原點(diǎn),分別為軸,過且平行于的方向?yàn)?/span>軸,如圖,建立空間直角坐標(biāo)系.

設(shè),

,

,

設(shè),則,,

設(shè)平面的法向量為,

因?yàn)?/span>與平面所成角的正弦值為,

所以,即,解得,

的中點(diǎn),則

設(shè)平面的法向量為,則

,即,

.

設(shè)平面的法向量為,則,

則二面角的余弦值為,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為給定的不小于的正整數(shù),考察個(gè)不同的正整數(shù),,,構(gòu)成的集合,若集合的任何兩個(gè)不同的非空子集所含元素的總和均不相等,則稱集合差異集合

1)分別判斷集合,集合是否是差異集合;(只需寫出結(jié)論)

2)設(shè)集合差異集合,記,求證:數(shù)列的前項(xiàng)和;

3)設(shè)集合差異集合,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第28屆金雞百花電影節(jié)將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會(huì)》《春江水暖》《第一次的離別》《春潮》《抵達(dá)之謎》五部優(yōu)秀作品將在電影節(jié)進(jìn)行展映.若從這五部作品中隨機(jī)選擇兩部放在展映的前兩位,則《春潮》與《抵達(dá)之謎》至少有一部被選中的概率為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(0,-2),橢圓E (a>b>0)的離心率為F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn).

(1)E的方程;

(2)設(shè)過點(diǎn)A的動(dòng)直線lE相交于P,Q兩點(diǎn).當(dāng)OPQ的面積最大時(shí),求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,左、右焦點(diǎn)分別是、,且橢圓上一動(dòng)點(diǎn)的最遠(yuǎn)距離為,過的直線與橢圓交于,兩點(diǎn).

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)為直角時(shí),求直線的方程;

3)直線的斜率存在且不為0時(shí),試問軸上是否存在一點(diǎn)使得,若存在,求出點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創(chuàng)新高,比去年218(十億元)多了50(十億元),這些數(shù)字的背后,除了是消費(fèi)者買買買的表現(xiàn),更是購物車?yán)镏袊孪M(fèi)的奇跡,為了研究歷年銷售額的變化趨勢,一機(jī)構(gòu)統(tǒng)計(jì)了2010年到2019年天貓雙十一的銷售額數(shù)據(jù)(單位:十億元).繪制如下表1

1

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

編號

1

2

3

4

5

6

7

8

9

10

銷售額

0.9

8.7

22.4

41

65

94

132.5

172.5

218

268

根據(jù)以上數(shù)據(jù)繪制散點(diǎn)圖,如圖所示.

把銷售超過100(十億元)的年份叫暢銷年,把銷售額超過200(十億元)的年份叫狂歡年,從2010年到2019年這十年的暢銷年中任取2個(gè),求至少取到一個(gè)狂歡年的概率.

參考公式:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的三個(gè)頂點(diǎn)均在拋物線上,給出下列命題:

①若直線過點(diǎn),則存在使拋物線的焦點(diǎn)恰為的重心;

②若直線過點(diǎn),則存在點(diǎn)使為直角三角形;

③存在,使拋物線的焦點(diǎn)恰為的外心;

④若邊的中線軸,,則的面積為.

其中正確的序號為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩年度未發(fā)生有責(zé)任道路交通事故

下浮

上三年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任交通死亡事故

上浮30%

某機(jī)構(gòu)為了解某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進(jìn)100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C,(ab0)過點(diǎn)(1,)且離心率為

1)求橢圓C的方程;

(2)設(shè)橢圓C的右頂點(diǎn)為P,過定點(diǎn)(2,﹣1)的直線lykx+m與橢圓C相交于異于點(diǎn)PAB兩點(diǎn),若直線PAPB的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

同步練習(xí)冊答案