【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況,市某調(diào)查機構(gòu)借助網(wǎng)絡(luò)進行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進行抽樣分析,得到下表:(單位:人)

(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?

(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再從這5人中隨機選出3人贈送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;

②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機抽取10人贈送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學期望和方差.

參考公式:,其中.

參考數(shù)據(jù):

【答案】(1)不能在犯錯誤的概率不超過0.15的前提下認為市使用網(wǎng)絡(luò)外賣情況與性別有關(guān).

(2)①;②.

【解析】試題分析:(1)計算的值,進而可查表下結(jié)論;

(2)①由分層抽樣的抽樣比計算即可;

②由列聯(lián)表,可知抽到經(jīng)常使用網(wǎng)絡(luò)外賣的網(wǎng)民的頻率為,將頻率視為概率,即從市市民中任意抽取1人,恰好抽到經(jīng)常使用網(wǎng)絡(luò)外賣的市民的概率為,由題意得.

試題解析:

(1)由列聯(lián)表可知的觀測值, .

所以不能在犯錯誤的概率不超過0.15的前提下認為市使用網(wǎng)絡(luò)外賣情況與性別有關(guān).

(2)①依題意,可知所抽取的5名女網(wǎng)民中,經(jīng)常使用網(wǎng)絡(luò)外賣的有(人),

偶爾或不用網(wǎng)絡(luò)外賣的有(人).

則選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率為.

②由列聯(lián)表,可知抽到經(jīng)常使用網(wǎng)絡(luò)外賣的網(wǎng)民的頻率為,

將頻率視為概率,即從市市民中任意抽取1人,

恰好抽到經(jīng)常使用網(wǎng)絡(luò)外賣的市民的概率為.

由題意得

所以;

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知B , C是兩個定點,|BC|=8,且△ABC的周長等于18,求這個三角形的頂點A的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定理:“實數(shù)m,n為常數(shù),若函數(shù)h(x)滿足h(m+x)+h(m﹣x)=2n,則函數(shù)y=h(x)的圖象關(guān)于點(m,n)成中心對稱”.
(1)已知函數(shù)f(x)= 的圖象關(guān)于點(1,b)成中心對稱,求實數(shù)b的值;
(2)已知函數(shù)g(x)滿足g(2+x)+g(﹣x)=4,當x∈[0,2]時,都有g(shù)(x)≤3成立,且當x∈[0,1]時,g(x)=2kx1+1 , 求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當時,,若函數(shù)恰有一個零點,則實數(shù)的取值集合是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△OAB中,點P為線段AB上的一個動點(不包含端點),且滿足

(1)若λ= ,用向量 表示 ;
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位共有老、中、青職工430人,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍.為了解職工身體狀況,現(xiàn)采用分層抽樣方法進行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為(
A.9
B.18
C.27
D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:y=ax+1﹣a(a∈R).若存在實數(shù)a使得一條曲線與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|,則稱此曲線為直線l的“絕對曲線”.下面給出四條曲線方程:①y=﹣2|x﹣1|;②y=x2;③(x﹣1)2+(y﹣1)2=1;④x2+3y2=4;則其中直線l的“絕對曲線”有(
A.①④
B.②③
C.②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商店計劃每天購進某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,則每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時每件調(diào)劑商品可獲利30元.

若商店一天購進該商品10件,求當天的利潤y單位:元關(guān)于當天需求量n單位:件,n∈N的函數(shù)解析式;

商店記錄了50天該商品的日需求量單位:件,整理得下表:

日需求量n

8

9

10

11

12

頻數(shù)

10

10

15

10

5

假設(shè)該店在這50天內(nèi)每天購進10件該商品,求這50天的日利潤單位:元的平均數(shù);

若該店一天購進10件該商品,記“當天的利潤在區(qū)間”為事件A,求PA的估計值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的單調(diào)區(qū)間和極值;

(2)是否存在實數(shù),使得函數(shù)上的最小值為1?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案