【題目】函數(shù)是定義在上的奇函數(shù),且為偶函數(shù),當(dāng)時(shí),,若函數(shù)恰有一個(gè)零點(diǎn),則實(shí)數(shù)的取值集合是( )
A. B.
C. D.
【答案】D
【解析】解:∵f(x)是定義在R上的奇函數(shù),且f(x﹣1)為偶函數(shù),
∴f(﹣x﹣1)=f(x﹣1)=﹣f(x+1),
即f(x)=﹣f(x+2),
則f(x+4)=﹣f(x+2)=f(x),即函數(shù)f(x)的周期是4,
∵f(x﹣1)為偶函數(shù),∴f(x﹣1)關(guān)于x=0對(duì)稱,
則f(x)關(guān)于x=﹣1對(duì)稱,同時(shí)也關(guān)于x=1對(duì)稱,
若x∈[﹣1,0],則﹣x∈[0,1],
此時(shí)f(﹣x)= =﹣f(x),則f(x)=﹣,x∈[﹣1,0],
若x∈[﹣2,﹣1],x+2∈[0,1],
則f(x)=﹣f(x+2)=﹣ ,x∈[﹣2,﹣1],
若x∈[1,2],x﹣2∈[﹣1,0],
則f(x)=﹣f(x﹣2)= ,x∈[1,2],
作出函數(shù)f(x)的圖象如圖:
由數(shù)g(x)=f(x)﹣x﹣b=0得f(x)=x+b,
由圖象知當(dāng)x∈[﹣1,0]時(shí),由 =x+b,平方得x2+(2b+1)x+b2=0,
由判別式△=(2b+1)2﹣4b2=0得4b+1=0,得b=﹣ ,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),
當(dāng)x∈[4,5],x﹣4∈[0,1],則f(x)=f(x﹣4)= ,
由 =x+b,平方得x2+(2b﹣1)x+4+b2=0,
由判別式△=(2b﹣1)2﹣16﹣4b2=0得4b=﹣15,得b=﹣ ,此時(shí)f(x)=x+b有兩個(gè)交點(diǎn),
則要使此時(shí)f(x)=x+b有一個(gè)交點(diǎn),則在[0,4]內(nèi),b滿足﹣<b<﹣,
即實(shí)數(shù)b的取值集合是4n﹣<b<4n﹣,
即4(n﹣1)+<b<4(n﹣1)+,
令k=n﹣1,
則4k+<b<4k+,
故選:D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)橢圓, 內(nèi)部重疊區(qū)域的邊界記為曲線C,P是曲線C上的任意一點(diǎn),給出下列四個(gè)判斷:
①P到F1(-4,0)、F2(4,0)、E1(0,-4)、E2(0,4)四點(diǎn)的距離之和為定值;
②曲線C關(guān)于直線y=x、y=-x均對(duì)稱;③曲線C所圍區(qū)域面積必小于36.
④曲線C總長(zhǎng)度不大于6π.上述判斷中正確命題的序號(hào)為________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+y2﹣6x﹣4y+4=0,點(diǎn)P(6,0).
(1)求過點(diǎn)P且與圓C相切的直線方程l;
(2)若圓M與圓C外切,且與x軸切于點(diǎn)P,求圓M的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象,則下面判斷正確的是( )
A.在區(qū)間(﹣2,1)上f(x)是增函數(shù)
B.在(1,3)上f(x)是減函數(shù)
C.在(4,5)上f(x)是增函數(shù)
D.當(dāng)x=4時(shí),f(x)取極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車“忽如一夜春風(fēng)來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進(jìn)行抽樣分析,得到表格:(單位:人)
經(jīng)常使用 | 偶爾或不用 | 合計(jì) | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計(jì) | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用共享單車情況與年齡有關(guān)?
(2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.
(i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
(ii)從這5人中,再隨機(jī)選出2人贈(zèng)送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓E經(jīng)過點(diǎn)A(2,3),對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)F1 , F2在x軸上,離心率e= .
(1)求橢圓E的方程;
(2)求∠F1AF2的角平分線所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購(gòu),網(wǎng)上叫外賣也開始成為不少人日常生活中不可或缺的一部分.為了解網(wǎng)絡(luò)外賣在市的普及情況,市某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了關(guān)于網(wǎng)絡(luò)外賣的問卷調(diào)查,并從參與調(diào)查的網(wǎng)民中抽取了200人進(jìn)行抽樣分析,得到下表:(單位:人)
(1)根據(jù)以上數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過0.15的前提下認(rèn)為市使用網(wǎng)絡(luò)外賣的情況與性別有關(guān)?
(2)①現(xiàn)從所抽取的女網(wǎng)民中利用分層抽樣的方法再抽取5人,再?gòu)倪@5人中隨機(jī)選出3人贈(zèng)送外賣優(yōu)惠券,求選出的3人中至少有2人經(jīng)常使用網(wǎng)絡(luò)外賣的概率;
②將頻率視為概率,從市所有參與調(diào)查的網(wǎng)民中隨機(jī)抽取10人贈(zèng)送禮品,記其中經(jīng)常使用網(wǎng)絡(luò)外賣的人數(shù)為,求的數(shù)學(xué)期望和方差.
參考公式:,其中.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解我市高二年級(jí)進(jìn)行的一次考試中數(shù)學(xué)成績(jī)的分布狀況,有關(guān)部門隨機(jī)抽取了一個(gè)樣本,對(duì)數(shù)學(xué)成績(jī)進(jìn)行分組統(tǒng)計(jì)分析如下表:
(1)求出表中m、n、M,N的值,并根據(jù)表中所給數(shù)據(jù)在下面給出的坐標(biāo)系中畫出頻率分布直方圖:
分組 | 頻數(shù) | 頻率 |
[0,30) | 3 | 0.03 |
[30,60) | 3 | 0.03 |
[60,90) | 37 | 0.37 |
[90,120) | m | n |
[120,150) | 15 | 0.15 |
合計(jì) | M | N |
(2)若我市參加本次考試的學(xué)生有18000人,試估計(jì)這次測(cè)試中我市學(xué)生成績(jī)?cè)?0分以上的人數(shù);
(3)為了深入分析學(xué)生的成績(jī),有關(guān)部門擬從分?jǐn)?shù)不超過60的學(xué)生中選取2人進(jìn)行進(jìn)一步分析,求被選中2人分?jǐn)?shù)均不超過30分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,底面,,,,.
(1)求證:平面平面;
(2)若點(diǎn)分別為上的點(diǎn),且,在線段上是否存在一點(diǎn),使得平面;若存在,求出三棱錐的體積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com