精英家教網 > 高中數學 > 題目詳情
設一個焦點為,且離心率的橢圓上下兩頂點分別為,直線交橢圓兩點,直線與直線交于點.
(1)求橢圓的方程;
(2)求證:三點共線.
(1)(2)詳見解析.

試題分析:(1)利用橢圓的定義和幾何性質;(2)直線與圓錐曲線相交問題,可以設而不求,聯(lián)立直線與橢圓方程,利用韋達定理結合題目條件來證明.
試題解析:(1)由題知,∴,3分
∴橢圓.4分
(2) 設點,由(1)知
∴直線的方程為,∴.5分
,,8分

由方程組
化簡得:,,.
10分
,
三點共線.12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知橢圓的離心率為,右焦點到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為)的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知點、為雙曲線的左、右焦點,過作垂直于軸的直線,在軸上方交雙曲線于點,且.圓的方程是
(1)求雙曲線的方程;
(2)過雙曲線上任意一點作該雙曲線兩條漸近線的垂線,垂足分別為,求的值;
(3)過圓上任意一點作圓的切線交雙曲線、兩點,中點為,求證:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線,點,過的直線交拋物線兩點.
(1)若,拋物線的焦點與中點的連線垂直于軸,求直線的方程;
(2)設為小于零的常數,點關于軸的對稱點為,求證:直線過定點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知中心在原點,焦點在坐標軸上的雙曲線經過、兩點
(1)求雙曲線的方程;
(2)設直線交雙曲線、兩點,且線段被圓三等分,求實數、的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓上的點到其兩焦點距離之和為,且過點
(Ⅰ)求橢圓方程;
(Ⅱ)為坐標原點,斜率為的直線過橢圓的右焦點,且與橢圓交于點,,若,求△的面積.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若θ是任意實數,則方程x2+4y2=1所表示的曲線一定不是 (   )
A.圓B.雙曲線C.直線D.拋物線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線與曲線的交點個數是       

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

過點且和拋物線相切的直線方程為                  .

查看答案和解析>>

同步練習冊答案