11.等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=18,則log3a1+log3a2+…+log3a10=(  )
A.1+log35B.2+log35C.12D.10

分析 由已知得a5a6=a4a7=9,從而log3a1+log3a2+…+log3a10=log3(a5a65=$lo{g}_{3}{3}^{10}$,由此能求出結(jié)果.

解答 解:∵等比數(shù)列{an}的各項均為正數(shù),且a5a6+a4a7=18,
∴a5a6=a4a7=9,
∴l(xiāng)og3a1+log3a2+…+log3a10
=log3(a1×a2×…×a10
=log3(a5a65
=$lo{g}_{3}{3}^{10}$
=10.
故選:D.

點評 本題考查對數(shù)式化簡求值,是基礎(chǔ)題,解題時要認真審題,注意等比數(shù)列的性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.直線y=kx-3與圓(x-3)2+(y-2)2=4相交于M,N兩點,若|MN|≥2$\sqrt{3}$,則k的取值范圍是(  )
A.[-$\frac{3}{4}$,0]B.(-∞,-$\frac{3}{4}$]∪[0,+∞)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某校高一(1)班50個學生選擇校本課程,他們在A、B、C三個模塊中進行選擇,且至少需要選擇1個模塊,具體模塊選擇的情況如表:
模塊模塊選擇的學生人數(shù)模塊模塊選擇的學生人數(shù)
A28A與B11
B26A與C12
C26B與C13
則三個模塊都選擇的學生人數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.橢圓$\frac{x^2}{9}+\frac{y^2}{4}=1$的焦點為$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$、$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$為橢圓上的一點,$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則△F1PF2的面積為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知圓O1和圓O2的極坐標方程分別為ρ=2,ρ2-2$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=2.
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)設兩圓交點分別為A、B,求直線AB的參數(shù)方程,并利用直線AB的參數(shù)方程求兩圓的公共弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<π)的最小正周期是π,將函數(shù)f(x)圖象向左平移$\frac{π}{3}$個單位長度后所得的函數(shù)過點$({-\frac{π}{6},1})$,則函數(shù)f(x)=sin(ωx+ϕ)( 。
A.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞減B.在區(qū)間$[{-\frac{π}{6},\frac{π}{3}}]$上單調(diào)遞增
C.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞減D.在區(qū)間$[{-\frac{π}{3},\frac{π}{6}}]$上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知四組函數(shù):
①f(x)=x,g(x)=($\sqrt{x}$)2;
②f(x)=x,g(x)=$\root{3}{{x}^{3}}$;
③f(n)=2n-1,g(n)=2n+1(n∈N);
④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函數(shù)的( 。
A.沒有B.僅有②C.②④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若tan100°=a,則用a表示cos10°的結(jié)果為( 。
A.$-\frac{1}{a}$B.$-\frac{a}{{\sqrt{1+{a^2}}}}$C.$\frac{a}{{\sqrt{1+{a^2}}}}$D.$-\frac{1}{{\sqrt{1+{a^2}}}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在△ABC中,三個內(nèi)角A,B,C的對邊分別是a,b,c.若a=3,sinA=$\frac{1}{2}$,sin(A+C)=$\frac{3}{4}$,則b等于( 。
A.4B.$\frac{8}{3}$C.6D.$\frac{9}{2}$

查看答案和解析>>

同步練習冊答案