(本小題14分)

已知某種稀有礦石的價(jià)值(單位:元)與其重量(單位:克)的平方成正比,且克該種礦石的價(jià)值為元。

(1)寫出(單位:元)關(guān)于(單位:克)的函數(shù)關(guān)系式;

(2)若把一塊該種礦石切割成重量比為的兩塊礦石,求價(jià)值損失的百分率;

(3)把一塊該種礦石切割成兩塊礦石時(shí),切割的重量比為多少時(shí),價(jià)值損失的百分率最大。(注:價(jià)值損失的百分率;在切割過(guò)程中的重量損耗忽略不計(jì))

 

【答案】

(1)函數(shù)關(guān)系式

(2)價(jià)值損失的百分率為;

(3)故當(dāng)重量比為時(shí),價(jià)值損失的百分率達(dá)到最大。

【解析】(1)依題意設(shè),

又當(dāng)時(shí),,∴,

。             ……………………4分

(2)設(shè)這塊礦石的重量為克,由⑴可知,按重量比為切割后的價(jià)值

,

價(jià)值損失為

價(jià)值損失的百分率為!9分

(3)解法1:若把一塊該種礦石按重量比為切割成兩塊,價(jià)值損失的百分率應(yīng)為

,又,當(dāng)且僅當(dāng)時(shí)取等號(hào),即重量比為時(shí),價(jià)值損失的百分率達(dá)到最大。

                                      ……………………14分

解法2:設(shè)一塊該種礦石切割成兩塊,其重量比為,則價(jià)值損失的百分率為

,又,∴,

,等號(hào)當(dāng)且僅當(dāng)時(shí)成立。     ……………………14分

 

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011屆北京市東城區(qū)示范校高三第二學(xué)期綜合練習(xí)數(shù)學(xué)文卷 題型:解答題

(本小題14分)已知函數(shù).
(1)若,點(diǎn)P為曲線上的一個(gè)動(dòng)點(diǎn),求以點(diǎn)P為切點(diǎn)的切線斜率取最小值時(shí)的切線方程;
(2)若函數(shù)上為單調(diào)增函數(shù),試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆陜西省高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知二次函數(shù)滿足:,且該函數(shù)的最小值為1.

⑴ 求此二次函數(shù)的解析式;

⑵ 若函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2013111922523809266031/SYS201311192253311566112238_ST.files/image004.png">= .(其中). 問(wèn)是否存在這樣的兩個(gè)實(shí)數(shù),使得函數(shù)的值域也為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江西省協(xié)作體高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題14分)已知函數(shù) 

(Ⅰ)若且函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)的取值范圍;

(Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求證:…….

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省高三上學(xué)期第一次調(diào)研考試數(shù)學(xué)試卷(實(shí)驗(yàn)班) 題型:解答題

(本小題14分)已知函數(shù)f(x)=,x∈[1,+∞

(1)當(dāng)a=時(shí),求函數(shù)f(x)的最小值

(2)若對(duì)任意x∈[1,+∞,f(x)>0恒成立,試求實(shí)數(shù)a的取值范圍

(3)求f(x)的最小值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年福建省四地六校高二下學(xué)期第一次月考數(shù)學(xué)理卷 題型:解答題

(本小題14分)

已知函數(shù).

(Ⅰ)若,求曲線處切線的斜率;

(Ⅱ)求的單調(diào)區(qū)間;

(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案