6.x2+y2=1經(jīng)過(guò)伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$,后所得圖形的焦距( 。
A.4B.2$\sqrt{13}$C.2$\sqrt{5}$D.6

分析 用x′,y′表示出x,y,代入原方程得出變換后的方程,從而得出焦距.

解答 解:由$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$得$\left\{\begin{array}{l}{x=\frac{x′}{2}}\\{y=\frac{y′}{3}}\end{array}\right.$,代入x2+y2=1得$\frac{x{′}^{2}}{4}+\frac{y{′}^{2}}{9}$=1,
∴橢圓的焦距為2$\sqrt{9-4}$=2$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查了伸縮變換,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.直線$ρcosθ=\frac{1}{2}$被圓ρ=1所截得的弦長(zhǎng)為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{x^2}{{1+{x^2}}}$.
(Ⅰ)分別求$f(2)+f(\frac{1}{2})$,$f(3)+f(\frac{1}{3})$,$f(4)+f(\frac{1}{4})$,的值;
(Ⅱ)歸納猜想一般性結(jié)論,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若$θ∈[{0,\frac{π}{2}}]$,$cos2θ=\frac{7}{25}$,則sinθ=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某市2016年各月平均房?jī)r(jià)同比(與上一年同月比較)和環(huán)比(與相鄰上月比較)漲幅情況如圖所示,根據(jù)此圖考慮該市 2016年各月平均房?jī)r(jià):
①同比2015年有漲有跌;②同比漲幅3月份最大,12月份最。
③1月份最高;④5月比9月高,其中正確結(jié)論的編號(hào)為①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.方程y=-$\sqrt{25-{x}^{2}}$表示的曲線( 。
A.一條射線B.一個(gè)圓C.兩條射線D.半個(gè)圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面A1ADD1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點(diǎn).
(1)求證:A1O∥平面AB1C
(2)求直線B1C與平面C1CDD1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1}{x}$
(1)利用定義法求函數(shù)f(x)=$\frac{1}{x}$的導(dǎo)函數(shù)
(2)求曲線f(x)=$\frac{1}{x}$過(guò)(2,0)的切線方程
(3)求(2)的切線與曲線$f(x)=\frac{1}{x}$及直線x=2所圍成的曲邊圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$\frac{cos2α}{cos(α+\frac{π}{4})}$=$\frac{1}{2}$,則sin2α的值為( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案