的三個(gè)內(nèi)角所對(duì)的邊分別為,向量
,,且.
(1)求的大;
(2)現(xiàn)在給出下列三個(gè)條件:①;②;③,試從中再選擇兩個(gè)條件以確定,求出所確定的的面積.
(1);(2).
解析試題分析:(1)利用向量的垂直條件,可得,再利用三角函數(shù)的和差公式即可求;(2)選擇①②,利用余弦定理由(1)知帶入求解整理可得,即可求得面積.
(1) , 即:, , (6分)
(2)方案一:選擇①②,可確定,
由余弦定理,得: (10分)
整理得:
(12分);
方案二:選擇①③,可確定,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f6/4/rxzig1.png" style="vertical-align:middle;" />
又
由正弦定理 10分
所以 12分(選擇②③不能確定三角形)
考點(diǎn):1向量的垂直,2三角函數(shù)的和差公式,3余弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
直線與拋物線:交于兩點(diǎn),點(diǎn)是拋物線準(zhǔn)線上的一點(diǎn),
記,其中為拋物線的頂點(diǎn).
(1)當(dāng)與平行時(shí),________;
(2)給出下列命題:
①,不是等邊三角形;
②且,使得與垂直;
③無論點(diǎn)在準(zhǔn)線上如何運(yùn)動(dòng),總成立.
其中,所有正確命題的序號(hào)是___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知向量m=(2cosx, cosx-sinx),n=(sin(x+),sinx),且滿足f(x)=m·n.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,a、b、c分別為角A、B、C所對(duì)的邊,且·=,求邊BC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量m=(cos,sin),n=(cos,sin),且滿足|m+n|=.
(1)求角A的大;
(2)若||+||=||,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)平面向量,,函數(shù).
(1)當(dāng)時(shí),求函數(shù)的取值范圍;
(2)當(dāng),且時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,-2),B(2,3),C(-2,-1).
(1)求以線段AB、AC為鄰邊的平行四邊形的兩條對(duì)角線的長(zhǎng);
(2)設(shè)實(shí)數(shù)t滿足(-t)·=0,求t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),曲線上的動(dòng)點(diǎn)滿足,定點(diǎn),由曲線外一點(diǎn)向曲線引切線,切點(diǎn)為,且滿足.
(1)求線段長(zhǎng)的最小值;
(2)若以為圓心所作的圓與曲線有公共點(diǎn),試求半徑取最小值時(shí)圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com