【題目】設(shè)函數(shù)滿足

(1)求證,并求的取值范圍;

(2)證明函數(shù)內(nèi)至少有一個(gè)零點(diǎn);

(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.

【答案】(1)詳見(jiàn)解析,(2)詳見(jiàn)解析,(3).

【解析】

試題分析:(1)由等量關(guān)系消去C是解題思路,揭示a為正數(shù)是解題關(guān)鍵,本題是典型題,實(shí)質(zhì)是三個(gè)實(shí)數(shù)和為零,則最大的數(shù)必為正數(shù),最小的數(shù)必為負(fù)數(shù),中間的數(shù)不確定,通常被消去,(2)證明區(qū)間內(nèi)有解首選零點(diǎn)存在定理.連續(xù)性不是高中數(shù)學(xué)考核的知識(shí)點(diǎn),重點(diǎn)考核的是區(qū)間端點(diǎn)函數(shù)值的符號(hào).要確定區(qū)間端點(diǎn)函數(shù)值的符號(hào),需恰當(dāng)選擇區(qū)間端點(diǎn),是應(yīng)用零點(diǎn)存在定理的難點(diǎn),本題符號(hào)確定,但符號(hào)不確定.由于兩者符號(hào)與有關(guān),所以需要對(duì)進(jìn)行討論,(3)的取值范圍,需先運(yùn)用韋達(dá)定理建立函數(shù)解析式(二次函數(shù)),再利用(1的范圍(定義域),求二次函數(shù)值域.本題思路簡(jiǎn)單,但不能忽視定義域在解題中作用.

試題解析:(1)由題意得,

2分

,

,, 5分

(2),

,

,上有零點(diǎn);

,上有零點(diǎn)

函數(shù)內(nèi)至少有一個(gè)零點(diǎn) 9分

(3)

, 13分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以點(diǎn)A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過(guò)點(diǎn)B(-2,0)的動(dòng)直線l與圓A相交于M,N兩點(diǎn),QMN的中點(diǎn).

(1)求圓A的方程;

(2)當(dāng)|MN|=2時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 是邊長(zhǎng)為 的正方形, 平面 , , , 與平面 所成角為

(Ⅰ)求證: 平面
(Ⅱ)求二面角 的余弦值.
(Ⅲ)設(shè)點(diǎn) 是線段 上一個(gè)動(dòng)點(diǎn),試確定點(diǎn) 的位置,使得 平面 ,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,集合A={x|x2﹣x﹣6≤0}, ,那么集合A∩(UB)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , ,xm滿足0≤x1<x2<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(xn﹣1)﹣f(xn)|=12,(m≥2,m∈N*),則m的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2;數(shù)列{bn}的前n項(xiàng)和為Tn , 且滿足b1=1,b2=2,
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得 恰為數(shù)列{bn}中的一項(xiàng)?若存在,求所有滿足要求的bn;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)過(guò)市場(chǎng)調(diào)查,某種商品在銷售中有如下關(guān)系:第天的銷售價(jià)格(單位:元/件)為,天的銷售量(單位:件)為為常數(shù)),且在第20天該商品的銷售收入為1200元(.

的值,并求第15天該商品的銷售收入;

求在這30天中,該商品日銷售收入的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合由滿足以下性質(zhì)的函數(shù)組成:①上是增函數(shù);②對(duì)于任意的, .已知函數(shù), .

(1)試判斷, 是否屬于集合,并說(shuō)明理由;

(2)將(1)中你認(rèn)為屬于集合的函數(shù)記為.

(。┰囉昧信e法表示集合;

(ⅱ)若函數(shù)在區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】相傳古代印度國(guó)王在獎(jiǎng)賞他聰明能干的宰相達(dá)依爾(國(guó)際象棋發(fā)明者)時(shí),問(wèn)他需要什么,達(dá)依爾說(shuō):“國(guó)王只要在國(guó)際象棋棋盤的第一格子上放一粒麥子,第二格子上放二粒,第三格子上放四粒,以后按比例每一格加一倍,一直放到第64(國(guó)際象棋棋盤格數(shù)是8×8=64),我就感恩不盡,其他什么也不要了.國(guó)王想:“這才有多少,還不容易!”于是讓人扛來(lái)一袋小麥,但不到一會(huì)兒就用完了,再來(lái)一袋很快又沒(méi)有了,結(jié)果全印度的糧食用完還不夠,國(guó)王很奇怪,怎么也算不清這筆賬.請(qǐng)你設(shè)計(jì)一個(gè)程序框圖表示其算法,來(lái)幫國(guó)王計(jì)算一下需要多少粒小麥.

查看答案和解析>>

同步練習(xí)冊(cè)答案