【題目】已知函數(shù)f(x)=sinx,若存在x1 , x2 , ,xm滿足0≤x1<x2<xm≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+|f(xn﹣1)﹣f(xn)|=12,(m≥2,m∈N*),則m的最小值為

【答案】8
【解析】解:∵y=sinx對任意xi,xj(i,j=1,2,3,,m),

都有|f(xi)﹣f(xj)|≤f(x)max﹣f(x)min=2,

要使m取得最小值,盡可能多讓xi(i=1,2,3,,m)取得最高點(diǎn),

考慮0≤x1<x2<<xm≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|++|f(xm﹣1)﹣f(xm)|=12,

按下圖取值即可滿足條件,

∴m的最小值為8.

所以答案是:8.

【考點(diǎn)精析】利用數(shù)列的前n項(xiàng)和對題目進(jìn)行判斷即可得到答案,需要熟知數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司計(jì)劃在甲、乙兩座城市共投資240萬元,根據(jù)行業(yè)規(guī)定,每個(gè)城市至少要投資80萬元,由前期市場調(diào)研可知:甲城市收益與投入(單位:萬元)滿足,乙城市收益與投入(單位:萬元)滿足,設(shè)甲城市的投入為(單位:萬元),兩個(gè)城市的總收益為(單位:萬元).

(1)當(dāng)投資甲城市128萬元時(shí),求此時(shí)公司總收益;

⑵試問如何安排甲、乙兩個(gè)城市的投資,才能使公司總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)過拋物線 的焦點(diǎn) 的直線 交拋物線于點(diǎn) ,若以 為直徑的圓過點(diǎn) ,且與 軸交于 兩點(diǎn),則 ( )
A.3
B.2
C.-3
D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,按其數(shù)學(xué)成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:

(Ⅰ)補(bǔ)全頻率分布直方圖;
(Ⅱ)估計(jì)本次考試的數(shù)學(xué)平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生成績中抽取一個(gè)容量為6的樣本,再從這6個(gè)樣本中任取2人成績,求至多有1人成績在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且,若,時(shí),有成立.

(Ⅰ)判斷上的單調(diào)性,并證明;

(Ⅱ)解不等式

(Ⅲ)若對所有的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)滿足

(1)求證,并求的取值范圍;

(2)證明函數(shù)內(nèi)至少有一個(gè)零點(diǎn);

(3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式ax2﹣bx﹣1≥0的解集是[ ],求不等式x2﹣bx﹣a<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(I)判斷f(x)的奇偶性并證明

(Ⅱ)若a>1,判斷f(x)的單調(diào)性并用單調(diào)性定義證明;

(Ⅲ)若,求實(shí)數(shù)x的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號n的值.

查看答案和解析>>

同步練習(xí)冊答案