17.若實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}{y≥x}\\{x+y≥4}\\{x-3y+12≥0}\end{array}\right.$,則①2x-y的最大值是6;②$\sqrt{{x}^{2}+(y-1)^{2}}$最小值是$\frac{{3\sqrt{2}}}{2}$.

分析 ①利用線性規(guī)劃的內(nèi)容作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=2x-y,然后根據(jù)直線平移確定目標(biāo)函數(shù)的最大值.
②$\sqrt{{x}^{2}+(y-1)^{2}}$的幾何意義為區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(0,1)的距離,根據(jù)距離公式進(jìn)行求解即可.

解答 解:①作出不等式組對應(yīng)的平面區(qū)域如圖
由z=2x-y得y=2x-z,平移直線y=2x-z,由圖象可知當(dāng)直線經(jīng)過點(diǎn)A時(shí),直線的截距最小,此時(shí)z最大,
由$\left\{\begin{array}{l}{y=x}\\{x-3y+12=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=6}\\{y=6}\end{array}\right.$,即A(6,6)
代入z=2x-y得最大值為6.
②$\sqrt{{x}^{2}+(y-1)^{2}}$的幾何意義為區(qū)域內(nèi)的點(diǎn)到定點(diǎn)D(0,1)的距離,由圖象知D到直線x+y=4的距離最小,
此時(shí)d=$\frac{|0+1-4|}{\sqrt{2}}=\frac{3}{\sqrt{2}}$=$\frac{{3\sqrt{2}}}{2}$,
故答案為:①6; ②$\frac{{3\sqrt{2}}}{2}$.

點(diǎn)評 本題主要考查二元一次不等式組表示平面區(qū)域的知識,以及線性規(guī)劃的基本應(yīng)用,利用數(shù)形結(jié)合是解決此類問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.一半徑為R的半球挖去一圓柱后的幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{{80\sqrt{5}π}}{3}$-16πB.$\frac{{160\sqrt{5}π}}{3}$-16πC.$\frac{{80\sqrt{5}π}}{3}$-8πD.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\frac{1+tan(θ+720°)}{1-tan(θ-360°)}$=3+2$\sqrt{2}$,求:[cos2(π-θ)+sin(π+θ)•cos(π-θ)+2sin2(θ-π)]•$\frac{1}{co{s}^{2}(-θ-2π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線ax+y-1=0和直線2x+(a+1)y+1=0垂直,則實(shí)數(shù)a等于( 。
A.-$\frac{1}{3}$B.$\frac{1}{3}$C.-$\frac{1}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{1}{2}$上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=5,其前9項(xiàng)和為63.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{{a}_{n}}{_{n}}$+$\frac{_{n}}{{a}_{n}}$,求數(shù)列{cn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x|m-x|,且f(4)=0.
(1)求實(shí)數(shù)m的值;
(2)出函數(shù)f(x)的單調(diào)區(qū)間;
(3)若方程f(x)=a只有一個(gè)實(shí)根,確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列三個(gè)命題:
①“若x2+2x-3≠0,則x≠-3”為假命題;
②若p∨q為真命題,則p,q均為真命題;
③命題p:?x∈R,3x>0,則¬p:?x0∈R,3${\;}^{{x}_{0}}$≤0.
其中正確的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.記動點(diǎn)P是棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上一點(diǎn),記$\overrightarrow{{D}_{1}P}$=λ$\overrightarrow{{D}_{1}B}$,當(dāng)∠APC為鈍角時(shí),則λ的取值范圍為(  )
A.(0,1)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$)D.(1,3)

查看答案和解析>>

同步練習(xí)冊答案