在極坐標(biāo)系中,求曲線的交點(diǎn)的極坐標(biāo).

解析試題分析:解:以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立直角坐標(biāo)系
則曲線可化為:
曲線化為x=1,         6分
可得交點(diǎn)坐標(biāo)(1,1),
所以交點(diǎn)Q的極坐標(biāo)是     10分
考點(diǎn):極坐標(biāo)方程與普通方程的互化
點(diǎn)評(píng):解決的關(guān)鍵是根據(jù)極坐標(biāo)與直角坐標(biāo)關(guān)系互化來求解交點(diǎn)的坐標(biāo),屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,圓的參數(shù)方程為參數(shù)).以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的極坐標(biāo)方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)直線的參數(shù)方程為(t為參數(shù)),若以直角坐標(biāo)系點(diǎn)為極點(diǎn),軸為極軸,選擇相同的長(zhǎng)度單位建立極坐標(biāo)系,得曲線的極坐標(biāo)方程為ρ=
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并指出曲線是什么曲線;
(2)若直線與曲線交于AB兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線的參數(shù)方程為:,(t為參數(shù)),直線與曲線分別交于兩點(diǎn).
(1)寫出曲線和直線的普通方程;
(2)若成等比數(shù)列,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)
已知在直角坐標(biāo)系中,圓錐曲線的參數(shù)方程為為參數(shù)),定點(diǎn)是圓錐曲線的左,右焦點(diǎn).
(Ⅰ)以原點(diǎn)為極點(diǎn)、軸正半軸為極軸建立極坐標(biāo)系,求經(jīng)過點(diǎn)且平行于直線的直線的極坐標(biāo)方程;
(Ⅱ)在(I)的條件下,設(shè)直線與圓錐曲線交于兩點(diǎn),求弦的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn),
(1)求曲線的方程;
(2)若點(diǎn)在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)
已知曲線,直線 
(1)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,求點(diǎn)到直線的距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在極坐標(biāo)系中,已知曲線
設(shè)交于點(diǎn)
(I)求點(diǎn)的極坐標(biāo);
(II)若動(dòng)直線過點(diǎn),且與曲線交于兩個(gè)不同的點(diǎn)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,在△ABC中,MN∥DE∥DC,若AE∶EC=7∶3,則DB∶AB的值為(  )

A.3∶7B.7∶3C.3∶10D.7∶10

查看答案和解析>>

同步練習(xí)冊(cè)答案