【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線(為參數(shù))與曲線相交于點(diǎn),兩點(diǎn).
(1)求曲線的平面直角坐標(biāo)系方程和直線的普通方程;
(2)求的值.
【答案】(1):,:;(2).
【解析】試題(1)根據(jù)極坐標(biāo)和直角坐標(biāo)點(diǎn)的關(guān)系和,即可求出曲線的平面直角坐標(biāo)系方程;直線的參數(shù)方程,兩式聯(lián)立消去參數(shù),即求出了直線的直角坐標(biāo)系方程;(2)將直線的參數(shù)方程為程代入曲線的直角坐標(biāo)方程為,得到關(guān)于的二次方程,利用韋達(dá)定理,再根據(jù),求出。
試題解析:(1)由,得,∴.
即曲線的直角坐標(biāo)方程為.
消去參數(shù),得直線的普通方程.
(2)將直線的參數(shù)方程為程代入曲線的直角坐標(biāo)方程為,
得.
由韋達(dá)定理,得,,
所以,同為正數(shù),
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,其中,則下列判斷錯(cuò)誤的是( )
A.向量與軸正方向的夾角為定值(與、之值無關(guān))
B.的最大值為
C.與夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,,分別是橢圓短軸的上下兩個(gè)端點(diǎn),是橢圓的左焦點(diǎn),P是橢圓上異于點(diǎn),的點(diǎn),若的邊長為4的等邊三角形.
寫出橢圓的標(biāo)準(zhǔn)方程;
當(dāng)直線的一個(gè)方向向量是時(shí),求以為直徑的圓的標(biāo)準(zhǔn)方程;
設(shè)點(diǎn)R滿足:,,求證:與的面積之比為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)生對(duì)其親屬30人的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(1)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表;
(2)能否有99%的把握認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān),并寫出簡要分析.
主食蔬菜 | 主食肉類 | 合計(jì) | ||
50歲以下 | ||||
50歲以上 | ||||
合計(jì) | ||||
參考公式:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為了解高三年級(jí)不同性別的學(xué)生對(duì)取消藝術(shù)課的態(tài)度(支持或反對(duì)),進(jìn)行了如下的調(diào)查研究,全年級(jí)共有1350人,男女生比例為,現(xiàn)按分層抽樣方法抽取若干名學(xué)生,每人被抽到的概率均為,通過對(duì)被抽取學(xué)生的問卷調(diào)查,得到如下列聯(lián)表:
支持 | 反對(duì) | 總計(jì) | |
男生 | 30 | ||
女生 | 25 | ||
總計(jì) |
(1)完成列聯(lián)表,并判斷能否有的把握認(rèn)為態(tài)度與性別有關(guān)?
(2)若某班有6名男生被抽到,其中2人支持,4人反對(duì);有4名女生被抽到,其中2人支持,2人反對(duì),現(xiàn)從這10人中隨機(jī)抽取一男一女進(jìn)一步調(diào)查原因.求其中恰有一人支持一人反對(duì)的概率.
參考公式及臨界值表:
0.10 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如長方形 中, ,M為的中點(diǎn),將 沿 折起,使得平面 平面,
(1)求證: ;
(2)若點(diǎn) 是線段 上的中點(diǎn),求三棱錐與四棱錐的體積的比值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,命題對(duì)任意,不等式成立;命題存在,使得成立.
(1)若p為真命題,求m的取值范圍;
(2)若p且q為假,p或q為真,求m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)若曲線在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com