【題目】已知函數(shù),其中.
(1)若曲線在點處的切線方程為,求函數(shù)的解析式;
(2)討論函數(shù)的單調(diào)性;
(3)若對于任意的,不等式在上恒成立,求的取值范圍.
【答案】(1)函數(shù)的解析式為;(2)當時, 在, 內(nèi)是增函數(shù);當時在, 內(nèi)是增函數(shù),在, 內(nèi)是減函數(shù);(3).
【解析】試題(1)先求出導函數(shù),進而根據(jù)曲線在點處的切線方程為得到即,從中可求解出的值,進而可確定函數(shù)的解析式;(2)針對導函數(shù),對分、兩類,由導數(shù)大于零求出函數(shù)的單調(diào)增區(qū)間,由導數(shù)小于零可求出函數(shù)的單調(diào)遞減區(qū)間;(3)要使對于任意的,不等式在上恒成立,只須,由(2)的討論,確定函數(shù),進而得到不等式即,該不等式組對任意的成立,從中可求得.
(1),由導數(shù)的幾何意義得,于是
由切點在直線上可得,解得
所以函數(shù)的解析式為3分
(2)因為
當時,顯然,這時在, 內(nèi)是增函數(shù)
當時,令,解得
當變化時, , 的變化情況如下表:
↗ | 極大值 | ↘ | ↘ | 極小值 | ↗ |
所以在, 內(nèi)是增函數(shù),在, 內(nèi)是減函數(shù).......7分
(3)由(2)知, 在上的最大值為與中的較大者,對于任意的,不等式在上恒成立,當且僅當即對任意的成立,從而得,所以滿足條件的的取值范圍是..................13分.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線,過點的直線(為參數(shù))與曲線相交于點,兩點.
(1)求曲線的平面直角坐標系方程和直線的普通方程;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù),其中.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設,,若存在,對任意的實數(shù),恒有成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了工廠技術改造后某種型號設備的使用年限x和所支出的維修費y(萬元)的幾組對照數(shù)據(jù):
x(年) | 2 | 3 | 4 | 5 | 6 |
y(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
(1)若知道y對x呈線性相關關系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(2)已知該工廠技術改造前該型號設備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設備技術改造后,使用10年的維修費用能否比技術改造前降低?參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為,若滿足,則稱函數(shù)為“型函數(shù)”.
(1)判斷函數(shù)和是否為“型函數(shù)”,并說明理由;
(2)設函數(shù),記為函數(shù)的導函數(shù).
①若函數(shù)的最小值為1,求的值;
②若函數(shù)為“型函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年4月,甲乙兩校的學生參加了某考試機構舉行的大聯(lián)考,現(xiàn)對這兩校參加考試的學生的數(shù)學成績進行統(tǒng)計分析,數(shù)據(jù)統(tǒng)計顯示,考生的數(shù)學成績服從正態(tài)分布,從甲乙兩校100分及以上的試卷中用系統(tǒng)抽樣的方法各抽取了20份試卷,并將這40份試卷的得分制作成如圖所示的莖葉圖:
(1)試通過莖葉圖比較這40份試卷的兩校學生數(shù)學成績的中位數(shù);
(2)若把數(shù)學成績不低于135分的記作數(shù)學成績優(yōu)秀,根據(jù)莖葉圖中的數(shù)據(jù),判斷是否有的把握認為數(shù)學成績在100分及以上的學生中數(shù)學成績是否優(yōu)秀與所在學校有關?
(3)從所有參加此次聯(lián)考的學生中(人數(shù)很多)任意抽取3人,記數(shù)學成績在134分以上的人數(shù)為,求的數(shù)學期望.
附:若隨機變量服從正態(tài)分布,則,,.
參考公式與臨界值表:,其中.
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四面體的棱長滿足,,現(xiàn)將四面體放入一個主視圖為等邊三角形的圓錐中,使得四面體可以在圓錐中任意轉動,則圓錐側面積的最小值為___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com