已知直角梯形中,,,是等邊三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距離.

(1)   (2)

解析試題分析:解:(1)過,垂足為,則,過,交
為等腰直角三角形,




              6分
(2)∵,
             12分
考點(diǎn):空間中的角和距離的求解
點(diǎn)評(píng):主要是考查了運(yùn)用向量法來求解空間中的角和距離的求解,屬于中檔題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在三棱錐中,平面,分別是的中點(diǎn),,交于交于點(diǎn),連接

(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正四棱錐中,,點(diǎn)M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面是正方形, ,分別為的中點(diǎn),且.

(1)求證: ;
(2)求異面直線所成的角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四棱錐的底面是直角梯形,,,側(cè)面為正三角形,,.如圖所示.

(1) 證明:平面;
(2) 求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個(gè)全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時(shí),求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點(diǎn).

(1)證明:MN∥平面ABCD;
(2) 過點(diǎn)A作AQ⊥PC,垂足為點(diǎn)Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正方體, 是底對(duì)角線的交點(diǎn).

求證:(Ⅰ)∥面;
(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P­ABCD中,底面ABCD為平行四邊形,∠DAB=60°,AB=2AD,PD⊥底面ABCD。
(1)證明:PABD;(2)設(shè)PDAD,求二面角APBC的余弦值.  

查看答案和解析>>

同步練習(xí)冊(cè)答案