正四棱錐中,,點M,N分別在PA,BD上,且

(Ⅰ)求異面直線MN與AD所成角;
(Ⅱ)求證:∥平面PBC;
(Ⅲ)求MN與平面PAB所成角的正弦值.

(1)90o
(2)要證明線面平行,則主要證明線線平行即可,結合判定定理得到。
(3)

解析試題分析:(Ⅰ)設AC與BD的交點為O,AB=PA=2。以點O為坐標原點,,方向分別是x軸、y軸正方向,建立空間直角坐標系O-xyz.
則A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),
設P(0,0,p), 則=(-1,1,p),又AP=2,∴1+1+p2=4,∴p=,
=,
,
,,
,∴異面直線MN與AD所成角為90o
(Ⅱ)∵,
設平面PBC的法向量為="(a,b,c)," ,
= , ∵,∴MN∥平面PBC。      
(Ⅲ)設平面PAB的法向量為="(x,y,z),"
,∴,        
= , cos<> =,
∴MN與平面PAB所成角的正弦值是            

考點:線面平行和線面角的求解
點評:主要是考查了線面的位置關系的運用,屬于中檔題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,三棱柱A1B1C1—ABC的三視圖中,正(主)視圖和側(左)視圖是全等的矩形,俯視圖是等腰直角三角形,點M是A1B1的中點.

(1)求證:B1C∥平面AC1M;
(2)求證:平面AC1M⊥平面AA1B1B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在等腰梯形中,,,的中點.將梯形旋轉,得到梯形(如圖).

(1)求證:平面;
(2)求證:平面;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在線段上是否存在點N,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點,求證:

(1)B,C,H,G四點共面;
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在五棱錐P—ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC, ABC=,AB=2,BC=2AE=4,是等腰三角形.

(Ⅰ)求證:平面PCD⊥平面PAC;
(Ⅱ)求四棱錐P—ACDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直角梯形中,,,,是等邊三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,在四面體中,,,兩兩互相垂直,且

(1)求證:平面平面
(2)求二面角的大;
(3)若直線與平面所成的角為,求線段的長度.

查看答案和解析>>

同步練習冊答案