【題目】已知函數(shù)的定義域,值域是定義域,值域是,其中實(shí)數(shù)滿足.

甲:如果任意,存在,使得,那么;

乙:如果存在,存在,使得,那么;

丙:如果任意,任意,使得,那么;

丁:如果存在,任意,使得,那么

請判斷上述四個(gè)命題中,假命題的個(gè)數(shù)是( )

A.0B.1C.2D.3

【答案】C

【解析】

對于甲和丙為真命題,給予正確的推理即可,對于乙和丁為假命題,需要分別舉出反例.

甲:由題意得,對于所有的的值都有的值與之對應(yīng),所以有,故甲為真命題;

:例如,,;,,;存在使,符合題意,;故乙為假命題.

丙:由題意得, 對于所有的的值都有的值與之對應(yīng),反過來亦成立,所以有故丙為真命題;

。豪:,;,,符合題意,;故丁為假命題;

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,過點(diǎn)A作⊙O的切錢EP交CB 的延長線于P,己知∠PAB=25°.

(1)若BC是⊙O的直徑,求∠D的大;
(2)若∠DAE=25°,求證:DA2=DCBP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=x2﹣a|x﹣1|+b(a>0,b>﹣1)
(1)若b=0,a>2,求f(x)在區(qū)間[0,2]內(nèi)的最小值m(a);
(2)若f(x)在區(qū)間[0,2]內(nèi)不同的零點(diǎn)恰有兩個(gè),且落在區(qū)間[0,1),(1,2]內(nèi)各一個(gè),求a﹣b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《九章算術(shù)》中有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問:米幾何?”如圖所示的是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的(單位:升),則輸入的值為( )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義函數(shù)F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),設(shè)函數(shù)f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函數(shù)F(f(x),g(x))的最大值與零點(diǎn)之和為(
A.4
B.6
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S—ABCD的底面是正方形,側(cè)棱SA⊥底面ABCD,

過A作AE垂直SB交SB于E點(diǎn),作AH垂直SD交SD于H點(diǎn),平面AEH交SC于K點(diǎn),且AB=1,SA=2.

(1)證明E、H在以AK為直徑的圓上,且當(dāng)點(diǎn)P是SA上任一點(diǎn)時(shí),試求的最小值;

(2)求平面AEKH與平面ABCD所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中,第二、三、四項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列

1的值;

2此展開式中是否有常數(shù)項(xiàng),為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有6個(gè)黑球,4個(gè)白球.如果不放回地依次取出2個(gè)球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的條件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù)).若直線分別與圓和圓交于不同于原點(diǎn)的點(diǎn)

(1)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,求圓和圓的極坐標(biāo)方程;

(2)求的面積.

查看答案和解析>>

同步練習(xí)冊答案