12.曲線f(x)=-x2在點(1,-1)處的切線方程為( 。
A.y=x-2B.y=-3x+2C.y=2x-3D.y=-2x+1

分析 利用導數(shù)求出切線的斜率,然后求解切線方程.

解答 解:曲線f(x)=-x2的導數(shù)為:f′(x)=-2x,
可得:f′(1)=-2,
切線方程為:y+1=-2(x-1).即:y=-2x+1.
故選:D.

點評 本題考查切線方程的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.某校高三數(shù)學備課組為了更好的制定二輪復習的計劃,開展了試卷講評后效果的調研,從上學期期末數(shù)學試題中選出一些學生易錯題,重新進行測試,并認為做這些題不出任何錯誤的同學為“過關”,出了錯誤的同學認為“不過關”.現(xiàn)隨機抽查了年級50人,他們的測試成績的頻數(shù)分布如下表:
期末分數(shù)段(0,60)[60,75)[75,90)[90,105)[105,120)[120,150]
人數(shù)510151055
“過關”人數(shù)129734
(1)由以上統(tǒng)計數(shù)據(jù)完成如下2×2列聯(lián)表,并判斷是否有95%的把握認為期末數(shù)學成績不低于90分與測試“過關”是否有關?說明你的理由.
分數(shù)低于90分人數(shù)分數(shù)不低于90分人數(shù)合計
過關人數(shù)121426
不過關人數(shù)18624
合計302050
(2)在期末分數(shù)段[105,120)的5人中,從中隨機選3人,記抽取到過關測試“過關”的人數(shù)為X,求X的分布列及數(shù)學期望.
下面的臨界值表供參考:
P(K2≥k)0.150.100.050.025
k2.0722.7063.8415.024
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知{an}是等差數(shù)列,且a4+4是a2+2和a6+6的等比中項,則{an}的公差d=( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某種種子每粒發(fā)芽的概率都為0.8,現(xiàn)播種了100粒,對于沒有發(fā)芽的種子,每粒需再補種3粒,補種的種子數(shù)記為X.
(1)求X=30的概率(只列式即可);
(2)求隨機變量X的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在△ABC中,內角A,B,C所對邊為a,b,c,且acosC+ccosA=2bcosA,則sinB+sinC的取值范圍是( 。
A.($\frac{{\sqrt{3}}}{2}$,$\sqrt{3}}$]B.($\frac{\sqrt{3}}{2}$,$\sqrt{3}$)C.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$]D.($\frac{\sqrt{3}}{3}$,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在直角坐標系xOy中,以O為極點,x軸為正半軸建立直角坐標系,曲線M的方程為ρ2(3+cos2θ)=8.
(1)求曲線的直角坐標方程
(2)若點A(0,m),B(n,0)在曲線M上,點F(0,-$\sqrt{{m^2}-{n^2}}}$),F(xiàn)P平行于x軸交曲線M于點P(x0,y0),其中m>0,n>0,x0>0,求證:PO∥BA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若x,y為不等式組$\left\{\begin{array}{l}{x+y≥1}\\{2x-y≤2}\\{y-2≤0}\end{array}\right.$表示的平面區(qū)域中的一點,且使得mx+y取得最小值的點(x,y)有無數(shù)個,則m=( 。
A.1B.2C.-1D.1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知l1:ρsin(θ-$\frac{π}{3}$)=$\sqrt{3}$,l2:$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}$(t為參數(shù)).
(1)求l1,l2交點P的極坐標.
(2)點A、B、C三點在橢圓$\frac{x^2}{4}$+y2=1上,O為坐標原點,若有∠AOB=∠BOC=∠COA=120°,求$\frac{1}{{{{|{OA}|}^2}}}$+$\frac{1}{{{{|{OB}|}^2}}}$+$\frac{1}{{{{|{OC}|}^2}}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.計算:
(1)$\root{4}{(3-π)^{4}}$+(0.008)${\;}^{-\frac{1}{3}}$-(0.25)${\;}^{\frac{1}{2}}$×$(\frac{1}{\sqrt{2}})$-4
(2)若x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{7}$,求$\frac{x+{x}^{-1}}{{x}^{2}+{x}^{-2}-3}$的值.

查看答案和解析>>

同步練習冊答案