【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

(Ⅰ)求實(shí)數(shù), 的值;

(Ⅱ)若, , ,試判斷, , 三者是否有確定的大小關(guān)系,并說(shuō)明理由.

【答案】(Ⅰ) , ;(Ⅱ) ;理由見(jiàn)解析.

【解析】試題分析:

() 由題意可得,求解可得結(jié)論;

(Ⅱ) (),(i) ,利用對(duì)數(shù)的運(yùn)算性質(zhì)與基本不等式求解可得結(jié)論; (ii) , 設(shè)函數(shù), ,求導(dǎo)并判斷函數(shù)的單調(diào)性,易得結(jié)論; (iii) , 設(shè), ,同理求解即可.

試題解析:

(Ⅰ) .

由于所以, .

(Ⅱ)由(Ⅰ)知.

(i) ,

,故

(ii) =.

設(shè)函數(shù) ,

, .

當(dāng)時(shí), ,所以上單調(diào)遞增;

,因此上單調(diào)遞增.

,所以,即,即

(iii) =.

設(shè), .

,有.

當(dāng)時(shí), ,所以上單調(diào)遞增,有.

所以上單調(diào)遞增.

,所以,即,故

綜上可知:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: + =1(a>b>0),直線y=x+ 與以原點(diǎn)為圓心,以橢圓C的短半軸為半徑的圓相切,F(xiàn)1 , F2為其左右焦點(diǎn),P為橢圓C上的任意一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2
(1)求橢圓C的方程;
(2)已知A為橢圓C上的左頂點(diǎn),直線∫過(guò)右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1 , k2滿足k1+
k2=﹣ ,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高三期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計(jì)了他們的數(shù)學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),數(shù)學(xué)成績(jī)分組及樣本頻率分布表如下:

分組

頻數(shù)

頻率

[40,50)

2

0.04

[50,60)

3

0.06

[60,70)

14

0.28

[70,80)

15

[80,90)

0.24

[90,100]

4

0.08

合計(jì)


(1)請(qǐng)把給出的樣本頻率分布表中的空格都填上;
(2)為了幫助成績(jī)差的學(xué)生提高數(shù)學(xué)成績(jī),學(xué)校決定成立“二幫一”小組,即從成績(jī)[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué),已知甲同學(xué)的成績(jī)?yōu)?2分,乙同學(xué)的成績(jī)?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】連接球面上兩點(diǎn)的線段稱為球的弦,半徑為4的球的兩條弦AB、CD的長(zhǎng)度分別為2 和4 ,M、N分別是AB、CD的中點(diǎn),兩條弦的兩端都在球面上運(yùn)動(dòng),有下面四個(gè)命題:
①弦AB、CD可能相交于點(diǎn)M;
②弦AB、CD可能相交于點(diǎn)N;
③MN的最大值是5;
④MN的最小值是1;
其中所有正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=7,且a1+3,3a2 , a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an+log2an}(n∈N*)的前10項(xiàng)和T10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式ax2﹣|x+1|+3a≥0的解集為(﹣∞,+∞),則實(shí)數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組 所表示的平面區(qū)域?yàn)镈n , 記Dn內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)皆為整數(shù)的點(diǎn))的個(gè)數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達(dá)式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項(xiàng)和,求Sn;
(3)記 ,若對(duì)于一切正整數(shù)n,總有Tn≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雖然吸煙有害健康,但是由于歷史以及社會(huì)的原因,吸煙也是部分公民交際的重要媒介.世界衛(wèi)生組織1987年11月建議把每年的4月7日定為世界無(wú)煙日,且從1989年開(kāi)始,世界無(wú)煙日改為每年的5月31日.某報(bào)社記者專門(mén)對(duì)吸煙的市民做了戒煙方面的調(diào)查,經(jīng)抽樣只有的煙民表示愿意戒煙,將頻率視為概率.

(1)從該市吸煙的市民中隨機(jī)抽取3位,求至少有一位煙民愿意戒煙的概率;

(2)從該市吸煙的市民中隨機(jī)抽取4位, 表示愿意戒煙的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案