已知△ABC中,|AC|=|BC|=2,∠ACB=90°,M為BC的中點,D為以AC為直徑的圓上一動點,E為直徑AC上的動點,則
AM
AE
-
AM
DE
的取值范圍是
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:建立坐標(biāo)系,明確A,M,D的坐標(biāo),以及向量
AM
,
AD
的坐標(biāo),利用向量的數(shù)量積得到關(guān)于α的解析式求范圍.
解答: 解:由題意,建立如圖所示的直角坐標(biāo)系,則A(-1,0),M(1,-1),設(shè)D(cosα,sinα).
AM
=(2,-1),
AD
=(cosα+1,sinα).
AM
AE
-
AM
DE
=
AM
AD
=2cosα+2-sinα=2+
5
sin(θ-α),其中tanθ=2.
∵sin(θ-α)∈[-1,1],
∴2+
5
sin(θ-α)∈[2-
5
,2+
5
],
AM
AE
-
AM
DE
的取值范圍是[2-
5
,2+
5
].
故答案為:[2-
5
,2+
5
].
點評:本題考查平面向量的數(shù)量積的運用,涉及三角函數(shù)的值域,關(guān)鍵是建系通過向量的數(shù)量積得到關(guān)于α的三角函數(shù)解析式,利用正弦函數(shù)的有界性解決問題,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若角α滿足180°<α<360°,角5α與α有相同的始邊,且有相同的終邊,則角α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下給出五個命題,其中真命題的序號為
 

①函數(shù)f(x)=3ax+1-2a在區(qū)間(-1,1)上存在一個零點,則a的取值范圍是a<-1或a>
1
5
;
②“菱形的對角線相等”的否定是“菱形的對角線不相等”;
③?x∈(0,
π
2
),x<tanx;
④若0<a<b<1,則lna<lnb<ab<ba;
⑤“b2=ac”是“a,b,c成等比數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+bx-2>0的解集是{x|-2<x<-
1
4
}
,則a-b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A是銳二面角α-l-β的α內(nèi)一點,AB⊥β于點B,AB=
3
,A到l的距離為2,則二面角α-l-β的平面角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(x-a)(x-b)(其中a>b)的圖象如右圖,則函數(shù)g(x)=ax+b的圖象一定不過第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列終邊相同的是( 。
A、
π
4
+kπ,±
π
4
+2kπ,k∈Z
B、
π
3
+2kπ,
π
4
+π,k∈Z
C、
2
,
π
2
+kπ,k∈Z
D、(2k+1)π,(4k+1)π,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圖1、圖2分別表示A、B兩城市某月1日至6日當(dāng)天最低氣溫的數(shù)據(jù)折線圖(其中橫軸n表示日期,縱軸x表示氣溫),記A、B兩城市這6天的最低氣溫平均數(shù)分別為
.
xA
.
xB
,標(biāo)準(zhǔn)差分別為sA和sB,則它們的大小關(guān)系是( 。
A、
.
xA
.
xB
,sA>sB
B、
.
xA
.
xB
,sA<sB
C、
.
xA
.
xB
,sA<sB
D、
.
xA
.
xB
,sA>sB

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2x-3在(-∞,a]上是單調(diào)減函數(shù),則實數(shù)a的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案