【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?

【答案】當(dāng)月產(chǎn)量為300臺時,公司所獲利潤最大,最大利潤是25 000元.

【解析】試題分析:一般要根據(jù)題意寫出利潤關(guān)于產(chǎn)量的函數(shù),注意不同條件對應(yīng)利潤不同,所以要寫成分段函數(shù),然后利用二次函數(shù)性質(zhì)求最值,分段函數(shù)最值注意比較兩段的最值得大小.

試題解析:(1)設(shè)月產(chǎn)量為x,則總成本為20000+ 100x,從而利潤

當(dāng)0≦x≦400時,f(x)= 所以當(dāng)x=300時,有最大值25000;

當(dāng)x>400時,f(x)=60000-100x是減函數(shù),

所以f(x)= 60000-100×400<25000。

所以當(dāng)x=300,有最大值25000,

即當(dāng)月產(chǎn)量為300臺時,公司所獲利潤最大,最大利潤是25000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),圓

(1)若過點(diǎn)的圓的切線只有一條,求的值及切線方程;

(2)若過點(diǎn)且在兩坐標(biāo)軸上截距相等的直線與圓相切,求的值及切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某市的高一學(xué)生中隨機(jī)抽取400名同學(xué)的體重進(jìn)行統(tǒng)計,得到如圖所示頻率分布直方圖.

(Ⅰ)估計從該市高一學(xué)生中隨機(jī)抽取一人,體重超過的概率;

(Ⅱ)假設(shè)該市高一學(xué)生的體重服從正態(tài)分布.

(。├茫á瘢┑慕Y(jié)論估計該高一某個學(xué)生體重介于 之間的概率;

(ⅱ)從該市高一學(xué)生中隨機(jī)抽取3人,記體重介于之間的人數(shù)為,利用(ⅰ)的結(jié)論,求的分布列及.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖幾何體是四棱錐,為正三角形,,且

(1)求證: 平面平面

(2)是棱的中點(diǎn),求證:平面;

(3)求四棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知橢圓中心在坐標(biāo)原點(diǎn),長軸在上,分別在其左、右焦點(diǎn),橢圓上任意一點(diǎn),且最大值為1,最小

(1)求橢圓方程;

(2)設(shè)橢圓右頂點(diǎn),直線與橢圓交于兩點(diǎn)的任意一條直線,若,證明直線定點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),若

(1)求函數(shù)的解析式;

(2)畫出函數(shù)的圖象,并說出函數(shù)的單調(diào)區(qū)間;

(3)若,求相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最小正周期;

(2)若函數(shù)對任意,有,求函數(shù)在[﹣]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題實(shí)數(shù)滿足 ;命題實(shí)數(shù)滿足.

(1)當(dāng)時,若“”為真,求實(shí)數(shù)的取值范圍;

(2)若“非”是“非”的必要不充分條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺舉行電視奧運(yùn)知識大獎賽,比賽分初賽和決賽兩部分.為了增加節(jié)目的趣味性,

初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有次選題答題的機(jī)會,選手累計答對題或答錯題即終止其初賽的比賽,答對題者直接進(jìn)入決賽,答錯題者則被淘汰.已知選手甲答題的正確率為

(1) 求選手甲可進(jìn)入決賽的概率;

(2) 設(shè)選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案