【題目】已知命題實數(shù)滿足 ;命題實數(shù)滿足.
(1)當(dāng)時,若“且”為真,求實數(shù)的取值范圍;
(2)若“非”是“非”的必要不充分條件,求實數(shù)的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來天內(nèi)的日銷售量(件)與時間(天)的關(guān)系如下表所示.
時間/天 | 1 | 3 | 6 | 10 | 36 | …… |
日銷售量 /件 | 94 | 90 | 84 | 76 | 24 | …… |
未來40天內(nèi),前20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為 ,且為整數(shù)),后20天每天的價格(元/件)與時間(天)的函數(shù)關(guān)系式為,且為整數(shù)).
(Ⅰ)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(件)與 (天)的關(guān)系式;
(Ⅱ)試預(yù)測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?
(Ⅲ)在實際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈元利潤給希望工程. 公司通過銷售記錄發(fā)現(xiàn),前 20 天中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)=其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時,公司所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求的最小值;
(2)記的最小值為,已知函數(shù),若對于任意的,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,底面是正方形,側(cè)面底面,且,分別為的中點.
(1)求證:平面;
(2)在線段上是否存在點,使得二面角的余弦值為,若存在,請求出點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x2-4|x|-5.
(Ⅰ)畫出y=f(x)的圖象;
(Ⅱ)設(shè)A={x|f(x)≥7},求集合A;
(Ⅲ)方程f(x)=k+1有兩解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗.為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù) | |||||
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
一般頻數(shù) | 1 | 3 | 6 | 5 | 5 |
(1)由以下統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的額概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:,其中.
臨界值表
0.10 | 0.05 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,且點在直線上.
⑴求數(shù)列的通項公式;
⑵若函數(shù)(,且),求函數(shù)的最小值;
⑶設(shè),表示數(shù)列的前項和,試問:是否存在關(guān)于的整式,使得對于一切不小于2的自然數(shù)恒成立?若存在,寫出的解析式,并加以證明;若不存在,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com