7.已知集合A={-1,0,1},B={x|y=x2,x∈R},則A∩B=(  )
A.{0,1}B.{-1,0,1}C.{1}D.

分析 求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:∵A={-1,0,1},B={x|y=x2,x∈R}=R,
∴A∩B=A={-1,0,1},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.圓x2+y2-4x=0的圓心到雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線的距離為(  )
A.1B.2C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在等差數(shù)列{an}中,前m項(xiàng)(m為奇數(shù))之和為98,其中奇數(shù)項(xiàng)之和為56,且am-a1=48.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)求$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+$\frac{1}{{a}_{3}{a}_{4}}$+…$\frac{1}{{a}_{m-1}{a}_{m}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且ccosA,bcosB,acosC成等差數(shù)列.
(1)求角B的大;
(2)若a+c=$\sqrt{10}$,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題p:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點(diǎn),則下列表述正確的是( 。
A.p是假命題,其否定是:?k∈(2,+∞),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點(diǎn)
B.p是真命題,其否定是:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點(diǎn)
C.p是假命題,其否定是:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點(diǎn)
D.p是真命題,其否定是:?k∈(2,+∞),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求證:sin2A+sin2B+sin2C=0,cos2A+cos2B+cos2C=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sin2x-kcos2x的圖象關(guān)于直線x=$\frac{π}{8}$對(duì)稱,則k的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在半徑為1的圓周上任取兩點(diǎn),連成一條弦,求其長(zhǎng)度超過該圓內(nèi)接正三角形的邊長(zhǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的動(dòng)弦BC平行于虛軸,M,N是雙曲線的左、右頂點(diǎn),求直線MB,CN的交點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案