2.命題p:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點,則下列表述正確的是(  )
A.p是假命題,其否定是:?k∈(2,+∞),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點
B.p是真命題,其否定是:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點
C.p是假命題,其否定是:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點
D.p是真命題,其否定是:?k∈(2,+∞),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點

分析 求得雙曲線的漸近線方程和斜率,由題意可得k>$\frac{3}{2}$或k<-$\frac{3}{2}$.可得命題P為真命題,運(yùn)用命題的否定形式,即可得到結(jié)論.

解答 解:若直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點,
由雙曲線的漸近線方程y=±$\frac{3}{2}$x,
且雙曲線的焦點在y軸上,
可得k>$\frac{3}{2}$或k<-$\frac{3}{2}$.
故?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1有交點為真命題;
否定是:?k∈(0,2),直線y=kx與雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{4}$=1無交點.
故選:B.

點評 本題考查直線與雙曲線的位置關(guān)系的判斷,注意運(yùn)用漸近線的斜率,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a,b∈R,那么“l(fā)n$\frac{a}$>0”是“a>b>0”的(  )
A.充分不必要條件B.充要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,某測量人員,為了測量西江北岸不能到達(dá)的兩點A,B之間的距離,她在西江南岸找到一個點C,從C點可以觀察到點A,B;找到一個點D,從D點可以觀察到點A,C;找到一個點E,從E點可以觀察到點B,C;并測量得到數(shù)據(jù);
∠ACD=90°,∠ADC=60°,∠ACB=30°,∠BCE=105°,∠CEB=45°,DC=CE=2(百米).
(1)求△CDE的面積;
(2)求A,B之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知平面向量$\overrightarrow{α}$,$\overrightarrow{β}$,|$\overrightarrow{α}$|=1,$\overrightarrow{β}$=(2,0),$\overrightarrow{α}$⊥($\overrightarrow{α}$-2$\overrightarrow{β}$),求|2$\overrightarrow{α}$+$\overrightarrow{β}$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)的定義域為R,則“f(x)是奇函數(shù)”是“f(1)=-f(-1)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={-1,0,1},B={x|y=x2,x∈R},則A∩B=(  )
A.{0,1}B.{-1,0,1}C.{1}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從甲、乙兩品種的棉花中各抽測了10根棉花的纖維長度(單位:mm),所得數(shù)據(jù)如圖莖葉圖.記甲、乙兩品種棉花的纖維長度的平均值分別為$\overline{{x}_{甲}}$,$\overline{{x}_{乙}}$,標(biāo)準(zhǔn)差分別為s,s,則(  )
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s>sB.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,s<s
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s>sD.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,s<s

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,設(shè)$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為互相垂直的單位向量,則向量$\overrightarrow{a}$-$\overrightarrow$可表示為( 。
A.2$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.3$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$C.2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$D.$\overrightarrow{{e}_{1}}$-2$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知數(shù)列{an}的前n項和為Sn,且Sn=3•2n+1,則an=$\left\{\begin{array}{l}{7,n=1}\\{3•{2}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊答案