【題目】在平面直角坐標(biāo)系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點P,則當(dāng)實數(shù)k變化時,點P到直線4x-3y+10=0的距離的最大值為( 。
A.2B.C.D.
【答案】B
【解析】
求得直線l1,直線l2,恒過定點,以及兩直線垂直,可得交點P的軌跡,再由直線和圓的位置關(guān)系,即可得到所求最大值.
解:∵直線l1:kx-y+4=0與直線l2:x+ky-3=0的斜率之積:,
∴直線l1:kx-y+4=0與直線l2:x+ky-3=0垂直,
∵直線l1:kx-y+4=0與直線l2:x+ky-3=0分別過點M(0,4),N(3,0),
∴直線l1:kx-y+4=0與直線l2:x+ky-3=0的交點P在以MN為直徑的圓上,
即以C(,2)為圓心,半徑為的圓上,
圓心C到直線4x-3y+10=0的距離為d==2,
則點P到直線4x-3y+10=0的距離的最大值為d+r=+2=.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中共有8個乒乓球,其中有5個白球,3個紅球,這些乒乓球除顏色外完全相同.從袋中隨機取出一球,如果取出紅球,則把它放回袋中;如果取出白球,則該白球不再放回,并且另補一個紅球放入袋中,重復(fù)上述過程次后,袋中紅球的個數(shù)記為.
(I)求隨機變量的概率分布及數(shù)學(xué)期望;
(Ⅱ)求隨機變量的數(shù)學(xué)期望關(guān)于的表達式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.
(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);
(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺機床生產(chǎn)同一型號零件.記生產(chǎn)的零件的尺寸為(cm),相關(guān)行業(yè)質(zhì)檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機床生產(chǎn)的零件中各隨機抽取50件,經(jīng)質(zhì)量檢測得到下表數(shù)據(jù):
尺寸 | ||||||
甲零件頻數(shù) | 2 | 3 | 20 | 20 | 4 | 1 |
乙零件頻數(shù) | 3 | 5 | 17 | 13 | 8 | 4 |
(Ⅰ)設(shè)生產(chǎn)每件產(chǎn)品的利潤為:優(yōu)等品3元,中等品1元,次品虧本1元.若將頻率視為概率,試根據(jù)樣本估計總體的思想,估算甲機床生產(chǎn)一件零件的利潤的數(shù)學(xué)期望;
(Ⅱ)對于這兩臺機床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計總體的思想,估計約有多大的把握認為“零件優(yōu)等與否和所用機床有關(guān)”,并說明理由.
參考公式:.
參考數(shù)據(jù):
0.25
0.15
0.10
0.05
0.025
0.010
1.323
2.072
2.706
3.841
5.024
6.635
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】箱子中有形狀、大小都相同的3只紅球,2只白球,從中一次摸出2只球.
(1)求摸到的2只球顏色不同的概率:
(2)求摸到的2只球中至少有1只紅球的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐中,平面,,是邊長為2的等邊三角形,,為的中點.
(1)求證:;
(2)若直線與平面所成角的正切值為2,求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實數(shù)解,求實數(shù)的取值范圍;
(3)求證:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com