【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹(shù)上摘下100個(gè)芒果,其質(zhì)量分別在,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)得頻率分布直方圖如圖所示.

(1) 經(jīng)計(jì)算估計(jì)這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為的芒果中隨機(jī)抽取個(gè),再?gòu)倪@個(gè)中隨機(jī)抽取個(gè),求這個(gè)芒果中恰有個(gè)在內(nèi)的概率.

【答案】(1)268.75;(2).

【解析】

1)根據(jù)頻率分布直方圖,找到頻率總和為時(shí)對(duì)應(yīng)的質(zhì)量,這個(gè)質(zhì)量大小就是中位數(shù);(2)先用分層抽樣計(jì)算出中的芒果數(shù);然后對(duì)每個(gè)芒果進(jìn)行標(biāo)記,采用枚舉法列出所有情況,最后用古典概率模型計(jì)算目標(biāo)事件概率.

(1)由頻率分布直方圖可知,前三組頻率之和為:,第四組頻率為:; 所以中位數(shù)為:;

(2)抽取的6個(gè)芒果中,質(zhì)量在內(nèi)的分別有4個(gè)和2個(gè).

設(shè)質(zhì)量在內(nèi)的4個(gè)芒果分別為,質(zhì)量在內(nèi)的2個(gè)芒果分別為. 從這6個(gè)芒果中選出3個(gè)的情況共有,,,,,,,,,,,,

,共計(jì)20種,其中恰有一個(gè)在內(nèi)的情況有,,,,,,,共計(jì)12種,因此概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面底面,,分別是的中點(diǎn),求證:

(1)底面;

(2)平面平面;

(3)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代名詞“芻童”原來(lái)是草堆的意思,古代用它作為長(zhǎng)方體棱臺(tái)(上、下底面均為矩形額棱臺(tái))的專(zhuān)用術(shù)語(yǔ),關(guān)于“芻童”體積計(jì)算的描述,《九章算術(shù)》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計(jì)算方法是:將上底面的長(zhǎng)乘二,與下底面的長(zhǎng)相加,再與上底面的寬相乘;將下底面的長(zhǎng)乘二,與上底面的長(zhǎng)相加,再與下底面的寬相乘;把這兩個(gè)數(shù)值相加,與高相乘,再取其六分之一,以此算法,現(xiàn)有上下底面為相似矩形的棱臺(tái),相似比為,高為3,且上底面的周長(zhǎng)為6,則該棱臺(tái)的體積的最大值是( )

A. 14 B. 56 C. D. 63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)恰好是拋物線的焦點(diǎn).

(1)求橢圓的方程;

(2)已知、是橢圓上的兩點(diǎn),是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn).

①若直線的斜率為,求四邊形面積的最大值;

②當(dāng)運(yùn)動(dòng)時(shí),滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax2+bx+ca0),且f1

1)求證:函數(shù)fx)有兩個(gè)不同的零點(diǎn);

2)設(shè)x1,x2是函數(shù)fx)的兩個(gè)不同的零點(diǎn),求|x1x2|的取值范圍;

3)求證:函數(shù)fx)在區(qū)間(0,2)內(nèi)至少有一個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a為正實(shí)數(shù).如圖,一個(gè)水輪的半徑為a m,水輪圓心 O 距離水面,已知水輪每分鐘逆時(shí)針轉(zhuǎn)動(dòng) 5 圈.當(dāng)水輪上的點(diǎn) P 從水中浮現(xiàn)時(shí)(即圖中點(diǎn))開(kāi)始計(jì)算時(shí)間.

1)將點(diǎn) P 距離水面的高度 h(m )表示為時(shí)間 t(s)的函數(shù);

2)點(diǎn) P 第一次達(dá)到最高點(diǎn)需要多少時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l1kx-y+4=0與直線l2x+ky-3=0相交于點(diǎn)P,則當(dāng)實(shí)數(shù)k變化時(shí),點(diǎn)P到直線4x-3y+10=0的距離的最大值為( 。

A.2B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若無(wú)窮數(shù)列滿足:是正實(shí)數(shù),當(dāng)時(shí),,則稱(chēng)是“-數(shù)列”.已知數(shù)列是“-數(shù)列”.

(Ⅰ)若,寫(xiě)出的所有可能值;

(Ⅱ)證明:是等差數(shù)列當(dāng)且僅當(dāng)單調(diào)遞減;

(Ⅲ)若存在正整數(shù),對(duì)任意正整數(shù),都有,證明:是數(shù)列的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

(Ⅰ)討論單調(diào)區(qū)間;

(Ⅱ)若直線是函數(shù)圖象的切線,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案