A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
分析 由題意畫出圖形,再由$\frac{|\overrightarrow{P{F}_{2}}{|}^{2}+|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{1}}|}$的最小值為$\frac{4}{3}$,結(jié)合對(duì)勾函數(shù)的單調(diào)性可知當(dāng)$|\overrightarrow{P{F}_{1}}|$取最大值為a+c時(shí)成立,求得c值,則橢圓離心率可求.
解答 解:令|$\overrightarrow{P{F}_{1}}$|=s,|$\overrightarrow{P{F}_{2}}$|=t,
則$\frac{|\overrightarrow{P{F}_{2}}{|}^{2}+|\overrightarrow{P{F}_{1}}|}{|\overrightarrow{P{F}_{1}}|}$為$\frac{{t}^{2}+s}{s}$,其最小值為$\frac{4}{3}$,
則$\frac{{t}^{2}}{s}$的最小值為$\frac{1}{3}$.
由橢圓mx2+y2=m,得${x}^{2}+\frac{{y}^{2}}{m}=1$,
∵0<m<1,∴橢圓的長(zhǎng)軸長(zhǎng)為2.
∴$\frac{(2-s)^{2}}{s}=\frac{4}{s}+s-4≥\frac{1}{3}$,
∴$\frac{4}{s}+s≥\frac{13}{3}$,
由$\frac{4}{s}+s=\frac{13}{3}$,解得s=$\frac{4}{3}$或s=3(舍).
由對(duì)勾函數(shù)的單調(diào)性可知,當(dāng)s有最大值為a+c=$\frac{4}{3}$時(shí),$\frac{{t}^{2}+s}{s}$有最小值為$\frac{4}{3}$,
即1+c=$\frac{4}{3}$,得c=$\frac{1}{3}$.
∴橢圓的離心率e=$\frac{c}{a}=\frac{1}{3}$.
故選:B.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),考查了橢圓定義的應(yīng)用,訓(xùn)練了利用“對(duì)勾函數(shù)”的單調(diào)性求函數(shù)最值,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f($\frac{π}{6}$)>$\sqrt{2}$f($\frac{π}{4}$) | B. | $\sqrt{2}$sin1•f(1)>f($\frac{π}{4}$) | C. | f($\frac{π}{6}$)>$\sqrt{3}$f($\frac{π}{3}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)>$\sqrt{3}$f($\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 40 | B. | 60 | C. | 80 | D. | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com