已知函數(shù).
(1)若,當時,求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當時,,求上的反函數(shù)
(3)若關(guān)于的不等式在區(qū)間上有解,求實數(shù)的取值范圍.

(1);(2);(3).

解析試題分析:(1)這實質(zhì)上是解不等式,即,但是要注意對數(shù)的真數(shù)要為正,,;(2)上奇函數(shù)滿足,可很快求出,要求上的反函數(shù),必須求出上的解析式,當時,,故,當然求反函數(shù)還要求出反函數(shù)的定義域即原函數(shù)的值域;(3)可轉(zhuǎn)化為,這樣利用對數(shù)函數(shù)的性質(zhì)得,變成了整式不等式,問題轉(zhuǎn)化為不等式在區(qū)間上有解,而這個問題通常采用分離參數(shù)法,轉(zhuǎn)化為求相應函數(shù)的值域或最值.
試題解析:(1)原不等式可化為       1分
所以,           1分
                   2分
(2)因為是奇函數(shù),所以,得      1分
時,
     2分
此時,,所以      2分
(3)由題意,        1分
                   1分
所以不等式在區(qū)間上有解,
                3分
所以實數(shù)的取值范圍為      1分
考點:(1)對數(shù)不等式;(2)分段函數(shù)的反函數(shù);(3)不等式有解問題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題.實踐證明,聲音強度(分貝)由公式(為非零常數(shù))給出,其中為聲音能量.
(1)當聲音強度滿足時,求對應的聲音能量滿足的等量關(guān)系式;
(2)當人們低聲說話,聲音能量為時,聲音強度為30分貝;當人們正常說話,聲音能量為時,聲音強度為40分貝.當聲音能量大于60分貝時屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會暫時性失聰.問聲音能量在什么范圍時,人會暫時性失聰.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

“地溝油”嚴重危害了人民群眾的身體健康,某企業(yè)在政府部門的支持下,進行技術(shù)攻關(guān),新上了一種從“食品殘渣”中提煉出生物柴油的項目,經(jīng)測算,該項目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:

且每處理一噸“食品殘渣”,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將補貼.
(1)當x∈[200,300]時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損;
(2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)時下,網(wǎng)校教學越越受到廣大學生的喜愛,它已經(jīng)成為學生們課外學習的一種趨勢,假設(shè)某網(wǎng)校的套題每日的銷售量(單位:千套)與銷售價格(單位:元/套)滿足的關(guān)系式,其中,為常數(shù).已知銷售價格為4元/套時,每日可售出套題21千套.
(1)求的值;
(2)假設(shè)網(wǎng)校的員工工資、辦公等所有開銷折合為每套題2元(只考慮銷售出的套數(shù)),試確定銷售價格的值,使網(wǎng)校每日銷售套題所獲得的利潤最大.(保留1位小數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,長為20m的鐵絲網(wǎng),一邊靠墻,圍成三個大小相等、緊緊相連的長方形,那么長方形長、寬、各為多少時,三個長方形的面積和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,一種醫(yī)用輸液瓶可以視為兩個圓柱的組合體.開始輸液時,滴管內(nèi)勻速滴下球狀液體,其中球狀液體的半徑毫米,滴管內(nèi)液體忽略不計.

(1)如果瓶內(nèi)的藥液恰好分鐘滴完,問每分鐘應滴下多少滴?
(2)在條件(1)下,設(shè)輸液開始后(單位:分鐘),瓶內(nèi)液面與進氣管的距離為(單位:厘米),已知當時,.試將表示為的函數(shù).(注:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知, 
(1)求函數(shù)的解析式,并求它的單調(diào)遞增區(qū)間;
(2)若有四個不相等的實數(shù)根,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側(cè).設(shè),的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

同步練習冊答案