15.三棱錐A-BCD中,△ABC為等邊三角形,AB=2$\sqrt{3}$,∠BDC=90°,二面角A-BC-D的大小為150°,則三棱錐A-BCD的外接球的表面積為( 。
A.B.12πC.16πD.28π

分析 由題意畫出圖形,通過求解直角三角形可得三棱錐A-BCD的外接球的半徑,代入球的表面積公式得答案.

解答 解:設(shè)球心為M,BC的中點為P,
∵三角形BDC滿足∠BDC=90°,∴P為三角形BDC的外心,
設(shè)△ABC的外心為O,∵△ABC為等邊三角形,
∴MO⊥平面ABC,MP⊥平面BDC,
∵二面角A-BC-D的大小為150°,∴∠OPM=60°,
在等邊三角形ABC中,由AB=2$\sqrt{3}$,得AP=3,
∴OP=1,在Rt△MOP中,可得MO=$\sqrt{3}$,
在Rt△MOA中,得MA=$\sqrt{A{O}^{2}+M{O}^{2}}=\sqrt{{2}^{2}+(\sqrt{3})^{2}}=\sqrt{7}$.
∴三棱錐A-BCD的外接球的表面積為$4π•(\sqrt{7})^{2}=28π$.
故選:D.

點評 本題考查球的表面積與體積,考查空間想象能力和思維能力,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,在平面四邊形ABCD中,O為BD的中點,且OA=3,OC=5,若$\overrightarrow{AB}$•$\overline{AD}$=-7,則$\overrightarrow{BC}$•$\overrightarrow{DC}$的值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A={x|x2-3x+2=0},集合B={x|logx4=2},則A∪B=( 。
A.{-2,1,2}B.{-2,2}C.{1,2}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若f′(x0)=-3,則$\underset{lim}{h→0}$$\frac{f({x}_{0}+h)-f({x}_{0}-3h)}{h}$=(  )
A.-10B.-11C.-12D.-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知在直三棱柱ABC-A1B1C1中,△ABC為等腰直角三角形,AB=AC=4,AA1=a.棱BB1的中點為E,棱B1C1的中點為F,平面AEF與平面AA1C1C的交線與AA1所成角的正切值為$\frac{2}{3}$,則三棱柱ABC-A1B1C1外接球的半徑為$2\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,如果輸入的n=32,那么輸出的M=(  )
A.66B.65C.64D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{π}{3}$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\frac{1}{2}$,則$\overrightarrow{a}$+2$\overrightarrow$與$\overrightarrow$的夾角是(  )
A.$\frac{π}{6}$B.$\frac{5π}{6}$C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知z是復(fù)數(shù),且$\frac{z+2}{i}$=1+i,則z在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo)為(  )
A.(-3,1)B.(-3,-1)C.(1,-3)D.(-1,-3)

查看答案和解析>>

同步練習(xí)冊答案