15.若$C_n^0$+$2C_n^1$+$4C_n^2$+…+${2^n}C_n^n$=729,則n=6,$C_n^1+C_n^2+C_n^3+…+C_n^n$=63.

分析 利用二項式展開式的特征化簡所給的式子,可得結(jié)果.

解答 解:若$C_n^0$+$2C_n^1$+$4C_n^2$+…+${2^n}C_n^n$=(1+2)n=3n=729,則n=6;
而$C_n^1+C_n^2+C_n^3+…+C_n^n$=(${C}_{n}^{0}$+$C_n^1+C_n^2+C_n^3+…+C_n^n$)-${C}_{n}^{0}$=(1+1)n-1=26-1=63,
故答案為:6;63.

點評 本題主要考查二項式定理的應用,二項式展開式的特征,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.以下函數(shù),在區(qū)間[3,5]內(nèi)存在零點的是(  )
A.f(x)=-x3-3x+5B.f(x)=2x-4C.f(x)=2xln(x-2)-3D.f(x)=-$\frac{1}{x}$+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求不定積分∫[$\frac{f(x)}{f′(x)}$-$\frac{{f}^{2}(x)f″(x)}{f{′}^{3}(x)}$]dx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示,三棱柱ABC-A1B1C1的側(cè)棱長和底邊各邊長均為2,且側(cè)棱AA1⊥平面A1B1C1,正視圖是邊長為2的正方形,則該三棱柱的側(cè)視圖的面積為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知一個半球內(nèi)有一個內(nèi)接直三棱柱ABC-A1B1C1,底面ABC在半球的大圓面上,AA1=4,BC=4$\sqrt{3}$,∠BAC=120°,則半球的表面積為( 。
A.64πB.72πC.80πD.96π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列全稱命題中假命題的個數(shù)為(  )
①2x+1是整數(shù)(x∈R) 
②?x∈R,x>3 
③?x∈Z,2x2+1為奇數(shù).
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖所示,該程序框圖輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.若集合A={x|0≤2x-1≤1}.B={x|y=$\sqrt{4x-3}$+lg(7-x)},集合C={x|x2-(2a+1)x+a(a+1)≤0}
(Ⅰ)求A∪B
(Ⅱ)若A⊆C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在平面直角坐標系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{3}cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ是參數(shù),0≤φ≤π),以O為極點,以x軸的正半軸為極軸,建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)直線l1的極坐標方程是2ρsin($θ+\frac{π}{3}$)$+3\sqrt{3}=0$,直線l2:$θ=\frac{π}{3}$(ρ∈R)與曲線C的交點為P,與直線l1的交點為Q,求線段PQ的長.

查看答案和解析>>

同步練習冊答案