已知在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,面積為S,且滿足S=
1
2
c2tanC.
(1)求
a2+b2
c2
的值;
(2)若bc=
2
,A=45°,求b、c.
考點:余弦定理,正弦定理
專題:計算題,解三角形
分析:(1)由三角形的面積公式和同角的商數(shù)關(guān)系以及余弦定理,化簡整理,即可得到所求值;
(2)由余弦定理,結(jié)合(1)的結(jié)論,解關(guān)于b,c的方程即可得到.
解答: 解:(1)S=
1
2
c2tanC,即有
1
2
absinC=
1
2
c2tanC=
1
2
c2
sinC
cosC

即abcosC=c2,即2abcosC=2c2
即為a2+b2-c2=2c2,
即有a2+b2=3c2,
即有
a2+b2
c2
=3;
(2)由余弦定理可得,a2=b2+c2-2bccos45°
=b2+c2-2
2
×
2
2
=b2+c2-2,
由(1)可得,a2=3c2-b2,
則c2=b2-1,
再由bc=
2
,
解得,b=
2
,c=1.
點評:本題考查余弦定理和面積公式的運用,考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=log
2
x,若數(shù)列:2,f(x1),f(x2),…,f(xm),2m+4為等差數(shù)列,m∈N*
(Ⅰ)求數(shù)列{f(xn)}(1≤n≤m,m、n∈N*)的通項公式;
(Ⅱ求數(shù)列{xn}(1≤n≤m,m、n∈N*)的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在(0,+∞)上的減函數(shù),滿足f(x)+f(y)=f(x•y).
(1)求證:f(x)-f(y)=f(
x
y
)
;
(2)若f(2)=-3,解不等式f(1)-f(
1
x-8
)≥-9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx•cosx的圖象的值域是
 
,周期是
 
,此函數(shù)為
 
函數(shù)(填奇偶性)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一橋拱的形狀為拋物線,該拋物線拱的高為h=6m,寬為b=24m,則該拋物線拱的面積為
 
m2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學生對其親屬30人的飲食習慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主).

(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表:其中a=
 
  d=
 

主食蔬菜主食肉類總計
50歲以下aba+b
50歲以上cdc+d
總計a+cb+da+b+c+d
(2)用獨立性檢驗的方法進行分析,有多大的把握認為其親屬的飲食習慣與年齡有關(guān)?
參考公式K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
•(
a
+2
b
)=0,|
a
|=|
b
|=1 且|
c
-
a
-2
b
|=1,則|
c
|的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(理科選做)在四面體O-ABC中,點P為棱BC的中點.設(shè)
OA
=
a
OB
=
b
,
OC
=
c
,那么向量
AP
用基底{
a
,
b
,
c
}可表示為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓x2+y2+2y-3=0被直線x+y-k=0分成兩段圓弧,且較短弧長與較長弧長之比為1:3,則k=( 。
A、
2
-1或-
2
-1
B、1或-3
C、1或-
2
D、
2

查看答案和解析>>

同步練習冊答案