【題目】如圖,在海岸線一側有一休閑游樂場,游樂場的前一部分邊界為曲線段,該曲線段是函數(shù),的圖象,圖象的最高點為.邊界的中間部分為長1千米的直線段,且.游樂場的后部分邊界是以為圓心的一段圓弧.

(1)求曲線段的函數(shù)表達式;

(2)如圖,在扇形區(qū)域內建一個平行四邊形休閑區(qū),平行四邊形的一邊在海岸線上,一邊在半徑上,另外一個頂點在圓弧上,且,求平行四邊形休閑區(qū)面積的最大值及此時的值.

【答案】1,;(2時,平行四邊形面積最大值為

【解析】

1)由題意可得,,代入點求,從而求解析式;(2)作圖求得,從而求得最值.

1)由已知條件,得,

時,有

曲線段的解析式為

2)如圖,,,

軸于點,在中,,

中,

時,即時,平行四邊形面積最大值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義:對于一個項數(shù)為的數(shù)列,若存在,使得數(shù)列的前k項和與剩下項的和相等(若僅為1項,則和為該項本身),我們稱該數(shù)列是等和數(shù)列”.例如:因為,所以數(shù)列321等和數(shù)列”.請解答以下問題:

1)數(shù)列12,p4等和數(shù)列,求實數(shù)p的值;

2)項數(shù)為的等差數(shù)列的前n項和為,,求證:等和數(shù)列”.

3是公比為q項數(shù)為的等比數(shù)列,其中恒成立.判斷是不是等和數(shù)列,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率是橢圓上的動點,且點到橢圓焦點的距離的最小值為1.

1)求橢圓的方程;

2)過橢圓的右焦點的直線交橢圓兩點,當時,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,幾何體中,均為邊長為2的正三角形,且平面平面,四邊形為正方形.

1)若平面平面,求證:平面平面

2)若二面角,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復發(fā)的情況進行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為

(1)補充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認為甲乙兩套治療方案對患者白血病復發(fā)有影響;

復發(fā)

未復發(fā)

總計

甲方案

乙方案

2

總計

70

(2)為改進“甲方案”,按分層抽樣組成了由5名患者構成的樣本,求隨機抽取2名患者恰好是復發(fā)患者和未復發(fā)患者各1名的概率.

附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線C)的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線CAB兩點,交該拋物線的準線于DE兩點.

1)求拋物線C的方程;

2)若F在線段上,P的中點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)的兩個零點為.

(I)求曲線在點處的切線方程;

(II)求函數(shù)的單調區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 底面, ,點分別在棱上,且平面.

(1)求證:

(2)求直線與平面所成角的正弦值.

(3)求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)討論的單調性;

2)證明:當時,.

3)證明:當時,.

查看答案和解析>>

同步練習冊答案