1.已知函數(shù)f(x)=xlnx-ax,g(x)=-ax2+2x-2,(a>0).
(Ⅰ)求f(x)的單調(diào)區(qū)間及最小值;
(Ⅱ)若f(x)≥g(x)在x∈[1,+∞]恒成立,求a的取值范圍.

分析 (Ⅰ)求出函數(shù)f(x)定義域?yàn)椋?,+∞),f′(x)=lnx+1-a,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的單調(diào)區(qū)間及最小值.
(Ⅱ)令h(x)=f(x)-g(x),問(wèn)題等價(jià)于hmin≥0,x∈[1,+∞),求出h′(x)=2ax+lnx-a-1,令m(x)=2ax+lnx-a-1,則${m}^{'}(x)=2a+\frac{1}{x}$,由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.

解答 解:(Ⅰ)∵f(x)=xlnx-ax,∴函數(shù)f(x)定義域?yàn)椋?,+∞),…(1分)
f′(x)=lnx+1-a,令f′(x)>0,即lnx+1-a>0,得x>ea-1
令f′(x)<0,即lnx+1-a<0,得0<x<ea-1,
∴f(x)的增區(qū)間為(ea-1,+∞),減區(qū)間為(0,ea-1),
∴fmin(x)=f(ea-1)=ea-1lnea-1-a•ea-1=-ea-1.…(4分)
(Ⅱ)∵f(x)≥g(x)在x∈[1,+∞)恒成立,令h(x)=f(x)-g(x),
∴問(wèn)題等價(jià)于hmin≥0,x∈[1,+∞),…(5分)
∵h(yuǎn)(x)=xlnx+ax2-ax-2x+2,
∴h′(x)=2ax+lnx-a-1,
令m(x)=2ax+lnx-a-1,則${m}^{'}(x)=2a+\frac{1}{x}$,
∵x≥1,a>0,∴${m}^{'}(x)=2a+\frac{1}{x}$>0,
∴m(x)在[1,+∞)上單調(diào)遞增,∴當(dāng)x≥1時(shí),m(x)≥m(1)=a-1,…(8分)
若m(1)=a-1≥0,即a≥1時(shí),h′(x)=m(x)≥m(1)=a-1≥0恒成立,
此時(shí)h(x)=xlnx+ax2-ax-2x+2在x∈[1,+∞)上單調(diào)遞增,∴h(x)≥h(1)=0,
∴a≥1滿足題意…(11分)
下面證明當(dāng)0<a<1不合題意,
當(dāng)0<a<1時(shí),∵h(yuǎn)′(x)=2ax+lnx-a-1,h′(1)=a-1<0,h′(e)=2ae-a>0,
由上面可知h′(x)在[1,+∞)上單調(diào)遞增,
∴h′(x)=2ax+lnx-a-1=0在(1,e)上有唯一解,設(shè)為x0,
∴當(dāng)x∈[1,x0)時(shí),h′(x)<0,此時(shí)h(x0)<h(1)=0不合題意.
綜上a≥1.
∴a的取值范圍[1,+∞).

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)區(qū)間和最小值的求法,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法、等價(jià)轉(zhuǎn)化思想和導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知拋物線E:y2=4x焦點(diǎn)為F,準(zhǔn)線為l,P為l上任意點(diǎn).過(guò)P作E的兩條切線,切點(diǎn)分別為Q,R.
(1)若P在x軸上,求|QR|;
(2)求證:以PQ為直徑的圓恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.命題“?x∈R,2x2-3x+9<0”的否定是?x∈R,2x2-3x+9≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{x+2}{x}$.
(Ⅰ)寫出函數(shù)f(x)的定義域和值域;
(Ⅱ)證明函數(shù)f(x)在(0,+∞)為單調(diào)遞減函數(shù);
(Ⅲ)試判斷函數(shù)g(x)=(x-2)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右準(zhǔn)線與兩漸近線交于A,B兩點(diǎn),它右焦點(diǎn)為F,若△ABF為等邊三角形,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知點(diǎn)A(-2,0),B(0,2),點(diǎn)P是圓(x-1)2+y2=1上任意一點(diǎn),則△PAB面積的最大值是( 。
A.3B.3+$\sqrt{2}$C.3-$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{2x-3}{2x+1}$+a在[0,$\frac{3}{2}$]的值域?yàn)榧螦,函數(shù)g(x)=$\sqrt{x+2}$+$\sqrt{2-x}$的定義域?yàn)榧螧.
(1)若a=0,求∁R(A∩B);
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列命題中正確的是( 。
A.若α>β,則sinα>sinβ
B.命題:“?x>1,x2>1”的否定是“?x≤1,x2≤1”
C.直線ax+y+2=0與ax-y+4=0垂直的充要條件為a=±1
D.“若xy=0,則x=0或y=0”的逆否命題為“若x≠0或y≠0,則xy≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.一個(gè)圓柱與一個(gè)三棱錐的組合體的正視圖和俯視圖如圖所示,則該幾何體的側(cè)視圖的面積為( 。
A.6B.$\frac{13}{2}$C.7D.

查看答案和解析>>

同步練習(xí)冊(cè)答案